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FOREWORD

I am writing these words on a watershed day in molecular biology. This morning, a
paper was officially published in the journal Nature reporting an initial sequence and
analysis of the human genome. One of the fruits of the Human Genome Project, the
paper describes the broad landscape of the nearly 3 billion bases of the euchromatic
portion of the human chromosomes.

In the most narrow sense, the paper was the product of a remarkable international
collaboration involving six countries, twenty genome centers, and more than a thou-
sand scientists (myself included) to produce the information and to make it available
to the world freely and without restriction.

In a broader sense, though, the paper is the product of a century-long scientific
program to understand genetic information. The program began with the rediscovery
of Mendel’s laws at the beginning of the 20th century, showing that information was
somehow transmitted from generation to generation in discrete form. During the first
quarter-century, biologists found that the cellular basis of the information was the
chromosomes. During the second quarter-century, they discovered that the molecular
basis of the information was DNA. During the third quarter-century, they unraveled
the mechanisms by which cells read this information and developed the recombinant
DNA tools by which scientists can do the same. During the last quarter-century,
biologists have been trying voraciously to gather genetic information-first from
genes, then entire genomes.

The result is that biology in the 21st century is being transformed from a purely
laboratory-based science to an information science as well. The information includes
comprehensive global views of DNA sequence, RNA expression, protein interactions
or molecular conformations. Increasingly, biological studies begin with the study of
huge databases to help formulate specific hypotheses or design large-scale experi-
ments. In turn, laboratory work ends with the accumulation of massive collections
of data that must be sifted. These changes represent a dramatic shift in the biological
sciences.

One of the crucial steps in this transformation will be training a new generation
of biologists who are both computational scientists and laboratory scientists. This
major challenge requires both vision and hard work: vision to set an appropriate
agenda for the computational biologist of the future and hard work to develop a
curriculum and textbook.

James Watson changed the world with his co-discovery of the double-helical
structure of DNA in 1953. But, he also helped train a new generation to inhabit that
new world in the 1960s and beyond through his textbook, The Molecular Biology
of the Gene. Discovery and teaching go hand-in-hand in changing the world.
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FOREWORD

In this book, Andy Baxevanis and Francis Ouellette have taken on the tremen-
dously important challenge of training the 21st century computational biologist. To-
ward this end, they have undertaken the difficult task of organizing the knowledge
in this field in a logical progression and presenting it in a digestible form. And, they
have done an excellent job. This fine text will make a major impact on biological
research and, in turn, on progress in biomedicine. We are all in their debt.

Eric S. Lander
February 15, 2001
Cambridge, Massachusetts



PREFACE

With the advent of the new millenium, the scientific community marked a significant
milestone in the study of biology—the completion of the “working draft” of the
human genome. This work, which was chronicled in special editions of Nature and
Science in early 2001, signals a new beginning for modern biology, one in which
the majority of biological and biomedical research would be conducted in a
“sequence-based’” fashion. This new approach, long-awaited and much-debated,
promises to quickly lead to advances not only in the understanding of basic biological
processes, but in the prevention, diagnosis, and treatment of many genetic and ge-
nomic disorders. While the fruits of sequencing the human genome may not be
known or appreciated for another hundred years or more, the implications to the
basic way in which science and medicine will be practiced in the future are stag-
gering. The availability of this flood of raw information has had a significant effect
on the field of bioinformatics as well, with a significant amount of effort being spent
on how to effectively and efficiently warehouse and access these data, as well as on
new methods aimed at mining this warehoused data in order to make novel biological
discoveries.

This new edition of Bioinformatics attempts to keep up with the quick pace of
change in this field, reinforcing concepts that have stood the test of time while
making the reader aware of new approaches and algorithms that have emerged since
the publication of the first edition. Based on our experience both as scientists and
as teachers, we have tried to improve upon the first edition by introducing a number
of new features in the current version. Five chapters have been added on topics that
have emerged as being important enough in their own right to warrant distinct and
separate discussion: expressed sequence tags, sequence assembly, comparative ge-
nomics, large-scale genome analysis, and BioPerl. We have also included problem
sets at the end of most of the chapters with the hopes that the readers will work
through these examples, thereby reinforcing their command of the concepts presented
therein. The solutions to these problems are available through the book’s Web site,
at www.wiley.com/bioinformatics. We have been heartened by the large number of
instructors who have adopted the first edition as their book of choice, and hope that
these new features will continue to make the book useful both in the classroom and
at the bench.

There are many individuals we both thank, without whose efforts this volume
would not have become a reality. First and foremost, our thanks go to all of the
authors whose individual contributions make up this book. The expertise and pro-
fessional viewpoints that these individuals bring to bear go a long way in making
this book’s contents as strong as it is. That, coupled with their general good-

XV



xvi

PREFACE

naturedness under tight time constraints, has made working with these men and
women an absolute pleasure.

Since the databases and tools discussed in this book are unique in that they are
freely shared amongst fellow academics, we would be remiss if we did not thank all
of the people who, on a daily basis, devote their efforts to curating and maintaining
the public databases, as well as those who have developed the now-indispensible
tools for mining the data contained in those databases. As we pointed out in the
preface to the first edition, the bioinformatics community is truly unique in that the
esprit de corps characterizing this group is one of openness, and this underlying
philosophy is one that has enabled the field of bioinformatics to make the substantial
strides that it has in such a short period of time.

We also thank our editor, Luna Han, for her steadfast patience and support
throughout the entire process of making this new edition a reality. Through our
extended discussions both on the phone and in person, and in going from deadline
to deadline, we’ve developed a wonderful relationship with Luna, and look forward
to working with her again on related projects in the future. We also would like to
thank Camille Carter and Danielle Lacourciere at Wiley for making the entire copy-
editing process a quick and (relatively) painless one, as well as Eloise Nelson for
all of her hard work in making sure all of the loose ends came together on schedule.

BFFO would like to acknowledge the continued support of Nancy Ryder. Nancy
is not only a friend, spouse, and mother to our daughter Maya, but a continuous
source of inspiration to do better, and to challenge; this is something that I try to do
every day, and her love and support enables this. BFFO also wants to acknowledge
the continued friendship and support from ADB throughout both of these editions.
It has been an honor and a privilege to be a co-editor with him. Little did we know
seven years ago, in the second basement of the Lister Hill Building at NIH where
we shared an office, that so many words would be shared between our respective
computers.

ADB would also like to specifically thank Debbie Wilson for all of her help
throughout the editing process, whose help and moral support went a long way in
making sure that this project got done the right way the first time around. I would
also like to extend special thanks to Jeff Trent, who I have had the pleasure of
working with for the past several years and with whom I’ve developed a special
bond, both professionally and personally. Jeff has enthusiastically provided me the
latitude to work on projects like these and has been a wonderful colleague and friend,
and I look forward to our continued associations in the future.

Andreas D. Baxevanis
B. F. Francis Ouellette
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BIOINFORMATICS AND
THE INTERNET

Andreas D. Baxevanis

Genome Technology Branch

National Human Genome Research Institute
National Institutes of Health

Bethesda, Maryland

Bioinformatics represents a new, growing area of science that uses computational
approaches to answer biological questions. Answering these questions requires that
investigators take advantage of large, complex data sets (both public and private) in
a rigorous fashion to reach valid, biological conclusions. The potential of such an
approach is beginning to change the fundamental way in which basic science is done,
helping to more efficiently guide experimental design in the laboratory.

With the explosion of sequence and structural information available to research-
ers, the field of bioinformatics is playing an increasingly large role in the study of
fundamental biomedical problems. The challenge facing computational biologists
will be to aid in gene discovery and in the design of molecular modeling, site-directed
mutagenesis, and experiments of other types that can potentially reveal previously
unknown relationships with respect to the structure and function of genes and pro-
teins. This challenge becomes particularly daunting in light of the vast amount of
data that has been produced by the Human Genome Project and other systematic
sequencing efforts to date.

Before embarking on any practical discussion of computational methods in solv-
ing biological problems, it is necessary to lay the common groundwork that will
enable users to both access and implement the algorithms and tools discussed in this
book. We begin with a review of the Internet and its terminology, discussing major
Internet protocol classes as well, without becoming overly engaged in the engineering



BIOINFORMATICS AND THE INTERNET

minutiae underlying these protocols. A more in-depth treatment on the inner workings
of these protocols may be found in a number of well-written reference books intended
for the lay audience (Rankin, 1996; Conner-Sax and Krol, 1999; Kennedy, 1999).
This chapter will also discuss matters of connectivity, ranging from simple modem
connections to digital subscriber lines (DSL). Finally, we will address one of the
most common problems that has arisen with the proliferation of Web pages through-
out the world—finding useful information on the World Wide Web.

INTERNET BASICS

Despite the impression that it is a single entity, the Internet is actually a network of
networks, composed of interconnected local and regional networks in over 100 coun-
tries. Although work on remote communications began in the early 1960s, the true
origins of the Internet lie with a research project on networking at the Advanced
Research Projects Agency (ARPA) of the US Department of Defense in 1969 named
ARPANET. The original ARPANET connected four nodes on the West Coast, with
the immediate goal of being able to transmit information on defense-related research
between laboratories. A number of different network projects subsequently surfaced,
with the next landmark developments coming over 10 years later. In 1981, BITNET
(““Because It’s Time”’) was introduced, providing point-to-point connections between
universities for the transfer of electronic mail and files. In 1982, ARPA introduced
the Transmission Control Protocol (TCP) and the Internet Protocol (IP); TCP/IP
allowed different networks to be connected to and communicate with one another,
creating the system in place today. A number of references chronicle the development
of the Internet and communications protocols in detail (Quarterman, 1990; Froehlich
and Kent, 1991; Conner-Sax and Krol, 1999). Most users, however, are content to
leave the details of how the Internet works to their systems administrators; the rel-
evant fact to most is that it does work.

Once the machines on a network have been connected to one another, there
needs to be an unambiguous way to specify a single computer so that messages and
files actually find their intended recipient. To accomplish this, all machines directly
connected to the Internet have an IP number. IP addresses are unique, identifying
one and only one machine. The IP address is made up of four numbers separated by
periods; for example, the IP address for the main file server at the National Center
for Biotechnology Information (NCBI) at the National Institutes of Health (NIH) is
130.14.25.1. The numbers themselves represent, from left to right, the domain
(130.14 for NIH), the subnet (.25 for the National Library of Medicine at NIH), and
the machine itself (.1). The use of IP numbers aids the computers in directing data;
however, it is obviously very difficult for users to remember these strings, so IP
addresses often have associated with them a fully qualified domain name (FQDN)
that is dynamically translated in the background by domain name servers. Going
back to the NCBI example, rather than use 130.14.25.1 to access the NCBI
computer, a user could instead use ncbi.nlm.nih.gov and achieve the same
result. Reading from left to right, notice that the IP address goes from least to most
specific, whereas the FQDN equivalent goes from most specific to least. The name
of any given computer can then be thought of as taking the general form com-
puter.domain, with the top-level domain (the portion coming after the last period in
the FQDN) falling into one of the broad categories shown in Table 1.1. Outside the
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TABLE 1.1. Top-Level Doman Names

TOP-LEVEL DOMAIN NAMES

.com Commercial site

.edu Educational site

.gov Government site

.mil Military site

.net Gateway or network host

.org Private (usually not-for-profit) organizations

EXAMPLES OF TOP-LEVEL DOMAIN NAMES USED OUTSIDE THE UNITED STATES
.ca Canadian site

.ac.uk Academic site in the United Kingdom

.co.uk Commercial site in the United Kingdom

GENERIC TOP-LEVEL DOMAINS PROPOSED BY IAHC

firm Firms or businesses

.shop Businesses offering goods to purchase (stores)

.web Entities emphasizing activities relating to the World Wide Web
.arts Cultural and entertainment organizations

.rec Recreational organizations

.info Information sources

.nom Personal names (e.g., yourlastname.nom)

A complete listing of domain suffixes, including country codes, can be found at http://www.currents.net/
resources/directory/noframes/nf.domains.html.

United States, the top-level domain names may be replaced with a two-letter code
specifying the country in which the machine is located (e.g., .ca for Canada and .uk
for the United Kingdom). In an effort to anticipate the needs of Internet users in the
future, as well as to try to erase the arbitrary line between top-level domain names
based on country, the now-dissolved International Ad Hoc Committee (IAHC) was
charged with developing a new framework of generic top-level domains (gTLD).
The new, recommended gTLDs were set forth in a document entitled The Generic
Top Level Domain Memorandum of Understanding (gTLD-MOU); these gTLDs are
overseen by a number of governing bodies and are also shown in Table 1.1.

The most concrete measure of the size of the Internet lies in actually counting
the number of machines physically connected to it. The Internet Software Consortium
(ISC) conducts an Internet Domain Survey twice each year to count these machines,
otherwise known as hosts. In performing this survey, ISC considers not only how
many hostnames have been assigned, but how many of those are actually in use; a
hostname might be issued, but the requestor may be holding the name in abeyance
for future use. To test for this, a representative sample of host machines are sent a
probe (a “ping”’), with a signal being sent back to the originating machine if the
host was indeed found. The rate of growth of the number of hosts has been phe-
nomenal; from a paltry 213 hosts in August 1981, the Internet now has more than
60 million “live’ hosts. The doubling time for the number of hosts is on the order
of 18 months. At this time, most of this growth has come from the commercial
sector, capitalizing on the growing popularity of multimedia platforms for advertising
and communications such as the World Wide Web.
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CONNECTING TO THE INTERNET

Of course, before being able to use all the resources that the Internet has to offer,
one needs to actually make a physical connection between one’s own computer and
“the information superhighway.”” For purposes of this discussion, the elements of
this connection have been separated into two discrete parts: the actual, physical
connection (meaning the “wire’” running from one’s computer to the Internet back-
bone) and the service provider, who handles issues of routing and content once
connected. Keep in mind that, in practice, these are not necessarily treated as two
separate parts—for instance, one’s service provider may also be the same company
that will run cables or fibers right into one’s home or office.

Copper Wires, Coaxial Cables, and Fiber Optics

Traditionally, users attempting to connect to the Internet away from the office had
one and only one option—a modem, which uses the existing copper twisted-pair
cables carrying telephone signals to transmit data. Data transfer rates using modems
are relatively slow, allowing for data transmission in the range of 28.8 to 56 kilobits
per second (kbps). The problem with using conventional copper wire to transmit data
lies not in the copper wire itself but in the switches that are found along the way
that route information to their intended destinations. These switches were designed
for the efficient and effective transfer of voice data but were never intended to handle
the high-speed transmission of data. Although most people still use modems from
their home, a number of new technologies are already in place and will become more
and more prevalent for accessing the Internet away from hardwired Ethernet net-
works. The maximum speeds at which each of the services that are discussed below
can operate are shown in Figure 1.1.

The first of these ‘“new solutions” is the integrated services digital network or
ISDN. The advent of ISDN was originally heralded as the way to bring the Internet
into the home in a speed-efficient manner; however, it required that special wiring
be brought into the home. It also required that users be within a fixed distance from
a central office, on the order of 20,000 feet or less. The cost of running this special,
dedicated wiring, along with a per-minute pricing structure, effectively placed ISDN
out of reach for most individuals. Although ISDN is still available in many areas,
this type of service is quickly being supplanted by more cost-effective alternatives.

In looking at alternatives that did not require new wiring, cable television pro-
viders began to look at ways in which the coaxial cable already running into a
substantial number of households could be used to also transmit data. Cable com-
panies are able to use bandwidth that is not being used to transmit television signals
(effectively, unused channels) to push data into the home at very high speeds, up to
4.0 megabits per second (Mbps). The actual computer is connected to this network
through a cable modem, which uses an Ethernet connection to the computer and a
coaxial cable to the wall. Homes in a given area all share a single cable, in a wiring
scheme very similar to how individual computers are connected via the Ethernet in
an office or laboratory setting. Although this branching arrangement can serve to
connect a large number of locations, there is one major disadvantage: as more and
more homes connect through their cable modems, service effectively slows down as
more signals attempt to pass through any given node. One way of circumventing
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Figure 1.1. Performance of various types of Internet connections, by maximum through-
put. The numbers indicated in the graph refer to peak performance; often times, the actual
performance of any given method may be on the order of one-half slower, depending on
configurations and system conditions.

this problem is the installation of more switching equipment and reducing the size
of a given ‘“neighborhood.”

Because the local telephone companies were the primary ISDN providers, they
quickly turned their attention to ways that the existing, conventional copper wire
already in the home could be used to transmit data at high speed. The solution here
is the digital subscriber line or DSL. By using new, dedicated switches that are
designed for rapid data transfer, DSL providers can circumvent the old voice switches
that slowed down transfer speeds. Depending on the user’s distance from the central
office and whether a particular neighborhood has been wired for DSL service, speeds
are on the order of 0.8 to 7.1 Mbps. The data transfers do not interfere with voice
signals, and users can use the telephone while connected to the Internet; the signals
are “‘split” by a special modem that passes the data signals to the computer and a
microfilter that passes voice signals to the handset. There is a special type of DSL
called asynchronous DSL or ADSL. This is the variety of DSL service that is be-
coming more and more prevalent. Most home users download much more infor-
mation than they send out; therefore, systems are engineered to provide super-fast
transmission in the “in” direction, with transmissions in the ‘““‘out” direction being
5-10 times slower. Using this approach maximizes the amount of bandwidth that
can be used without necessitating new wiring. One of the advantages of ADSL over
cable is that ADSL subscribers effectively have a direct line to the central office,
meaning that they do not have to compete with their neighbors for bandwidth. This,
of course, comes at a price; at the time of this writing, ADSL connectivity options
were on the order of twice as expensive as cable Internet, but this will vary from
region to region.

Some of the newer technologies involve wireless connections to the Internet.
These include using one’s own cell phone or a special cell phone service (such as
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Ricochet) to upload and download information. These cellular providers can provide
speeds on the order of 28.8—128 kbps, depending on the density of cellular towers
in the service area. Fixed-point wireless services can be substantially faster because
the cellular phone does not have to “‘find” the closest tower at any given time. Along
these same lines, satellite providers are also coming on-line. These providers allow
for data download directly to a satellite dish with a southern exposure, with uploads
occuring through traditional telephone lines. Along the satellite option has the po-
tential to be among the fastest of the options discussed, current operating speeds are
only on the order of 400 kbps.

Content Providers vs. ISPs

Once an appropriately fast and price-effective connectivity solution is found, users
will then need to actually connect to some sort of service that will enable them to
traverse the Internet space. The two major categories in this respect are online ser-
vices and Internet service providers (ISPs). Online services, such as America Online
(AOL) and CompuServe, offer a large number of interactive digital services, includ-
ing information retrieval, electronic mail (E-mail; see below), bulletin boards, and
‘“‘chat rooms,” where users who are online at the same time can converse about any
number of subjects. Although the online services now provide access to the World
Wide Web, most of the specialized features and services available through these
systems reside in a proprietary, closed network. Once a connection has been made
between the user’s computer and the online service, one can access the special fea-
tures, or content, of these systems without ever leaving the online system’s host
computer. Specialized content can range from access to online travel reservation
systems to encyclopedias that are constantly being updated—items that are not avail-
able to nonsubscribers to the particular online service.

Internet service providers take the opposite tack. Instead of focusing on provid-
ing content, the ISPs provide the tools necessary for users to send and receive
E-mail, upload and download files, and navigate around the World Wide Web, finding
information at remote locations. The major advantage of ISPs is connection speed;
often the smaller providers offer faster connection speeds than can be had from the
online services. Most ISPs charge a monthly fee for unlimited use.

The line between online services and ISPs has already begun to blur. For in-
stance, AOL’s now monthly flat-fee pricing structure in the United States allows
users to obtain all the proprietary content found on AOL as well as all the Internet
tools available through ISPs, often at the same cost as a simple ISP connection. The
extensive AOL network puts access to AOL as close as a local phone call in most
of the United States, providing access to E-mail no matter where the user is located,
a feature small, local ISPs cannot match. Not to be outdone, many of the major
national ISP providers now also provide content through the concept of portals.
Portals are Web pages that can be customized to the needs of the individual user
and that serve as a jumping-off point to other sources of news or entertainment on
the Net. In addition, many national firms such as Mindspring are able to match AOL’s
ease of connectivity on the road, and both ISPs and online providers are becoming
more and more generous in providing users the capacity to publish their own Web
pages. Developments such as this, coupled with the move of local telephone and
cable companies into providing Internet access through new, faster fiber optic net-
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works, foretell major changes in how people will access the Net in the future,
changes that should favor the end user in both price and performance.

ELECTRONIC MAIL

Most people are introduced to the Internet through the use of electronic mail or
E-mail. The use of E-mail has become practically indispensable in many settings
because of its convenience as a medium for sending, receiving, and replying to
messages. Its advantages are many:

It is much quicker than the postal service or ‘‘snail mail.”

* Messages tend to be much clearer and more to the point than is the case for
typical telephone or face-to-face conversations.

* Recipients have more flexibility in deciding whether a response needs to be
sent immediately, relatively soon, or at all, giving individuals more control
over workflow.

¢ It provides a convenient method by which messages can be filed or stored.
» There is little or no cost involved in sending an E-mail message.

These and other advantages have pushed E-mail to the forefront of interpersonal
communication in both industry and the academic community; however, users should
be aware of several major disadvantages. First is the issue of security. As mail travels
toward its recipient, it may pass through a number of remote nodes, at any one of
which the message may be intercepted and read by someone with high-level access,
such as a systems administrator. Second is the issue of privacy. In industrial settings,
E-mail is often considered to be an asset of the company for use in official com-
munication only and, as such, is subject to monitoring by supervisors. The opposite
is often true in academic, quasi-academic, or research settings; for example, the
National Institutes of Health’s policy encourages personal use of E-mail within the
bounds of certain published guidelines. The key words here are ‘‘published guide-
lines’’; no matter what the setting, users of E-mail systems should always find out
their organization’s policy regarding appropriate use and confidentiality so that they
may use the tool properly and effectively. An excellent, basic guide to the effective
use of E-mail (Rankin, 1996) is recommended.

Sending E-Mail. E-mail addresses take the general form user@computer.
domain, where user is the name of the individual user and computer.domain specifies
the actual computer that the E-mail account is located on. Like a postal letter, an
E-mail message is comprised of an envelope or header, showing the E-mail addresses
of sender and recipient, a line indicating the subject of the E-mail, and information
about how the E-mail message actually traveled from the sender to the recipient.
The header is followed by the actual message, or body, analogous to what would go
inside a postal envelope. Figure 1.2 illustrates all the components of an E-mail
message.

E-mail programs vary widely, depending on both the platform and the needs of
the users. Most often, the characteristics of the local area network (LAN) dictate
what types of mail programs can be used, and the decision is often left to systems
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Received: from dodo.cpmc.columbia.edu (dodo.cpmc.columbia.edu
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o 1. Introduction
1. What is it?
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3. How to use it? <remainder of body truncated>

Figure 1.2. Anatomy of an E-mail message, with relevant components indicated. This mes-
sage is an automated reply to a request for help file for the PredictProtein E-mail server.

administrators rather than individual users. Among the most widely used E-mail
packages with a graphical user interface are Eudora for the Macintosh and both
Netscape Messenger and Microsoft Exchange for the Mac, Windows, and UNIX
platforms. Text-based E-mail programs, which are accessed by logging in to a UNIX-
based account, include Elm and Pine.

Bulk E-Mail. As with postal mail, there has been an upsurge in ‘“spam” or
“junk E-mail,” where companies compile bulk lists of E-mail addresses for use in
commercial promotions. Because most of these lists are compiled from online reg-
istration forms and similar sources, the best defense for remaining off these bulk
E-mail lists is to be selective as to whom E-mail addresses are provided. Most
newsgroups keep their mailing lists confidential; if in doubt and if this is a concern,
one should ask.

E-Mail Servers. Most often, E-mail is thought of a way to simply send mes-
sages, whether it be to one recipient or many. It is also possible to use E-mail as a
mechanism for making predictions or retrieving records from biological databases.
Users can send E-mail messages in a format defining the action to be performed to
remote computers known as servers; the servers will then perform the desired op-
eration and E-mail back the results. Although this method is not interactive (in that
the user cannot adjust parameters or have control over the execution of the method
in real time), it does place the responsibility for hardware maintenance and software
upgrades on the individuals maintaining the server, allowing users to concentrate on
their results instead of on programming. The use of a number of E-mail servers is
discussed in greater detail in context in later chapters. For most of these servers,
sending the message help to the server E-mail address will result in a detailed set
of instructions for using that server being returned, including ways in which queries
need to be formatted.
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Aliases and Newsgroups. In the example in Figure 1.2, the E-mail message
is being sent to a single recipient. One of the strengths of E-mail is that a single
piece of E-mail can be sent to a large number of people. The primary mechanism
for doing this is through aliases; a user can define a group of people within their
mail program and give the group a special name or alias. Instead of using individual
E-mail addresses for all of the people in the group, the user can just send the E-mail
to the alias name, and the mail program will handle broadcasting the message to
each person in that group. Setting up alias names is a tremendous time-saver even
for small groups; it also ensures that all members of a given group actually receive
all E-mail messages intended for the group.

The second mechanism for broadcasting messages is through newsgroups. This
model works slightly differently in that the list of E-mail addresses is compiled and
maintained on a remote computer through subscriptions, much like magazine sub-
scriptions. To participate in a newsgroup discussions, one first would have to sub-
scribe to the newsgroup of interest. Depending on the newsgroup, this is done either
by sending an E-mail to the host server or by visiting the host’s Web site and using
a form to subscribe. For example, the BIOSCI newsgroups are among the most highly
trafficked, offering a forum for discussion or the exchange of ideas in a wide variety
of biological subject areas. Information on how to subscribe to one of the constituent
BIOSCI newsgroups is posted on the BIOSCI Web site. To actually participate in
the discussion, one would simply send an E-mail to the address corresponding to
the group that you wish to reach. For example, to post messages to the computational
biology newsgroup, mail would simply be addressed to comp-bio@net.bio.
net, and, once that mail is sent, everyone subscribing to that newsgroup would
receive (and have the opportunity to respond to) that message. The ease of reaching
a large audience in such a simple fashion is both a blessing and a curse, so many
newsgroups require that postings be reviewed by a moderator before they get dis-
seminated to the individual subscribers to assure that the contents of the message
are actually of interest to the readers.

It is also possible to participate in newsgroups without having each and every
piece of E-mail flood into one’s private mailbox. Instead, interested participants can
use news-reading software, such as NewsWatcher for the Macintosh, which provides
access to the individual messages making up a discussion. The major advantage is
that the user can pick and choose which messages to read by scanning the subject
lines; the remainder can be discarded by a single operation. NewsWatcher is an
example of what is known as a client-server application; the client software (here,
NewsWatcher) runs on a client computer (a Macintosh), which in turn interacts with
a machine at a remote location (the server). Client-server architecture is interactive
in nature, with a direct connection being made between the client and server
machines.

Once NewsWatcher is started, the user is presented with a list of newsgroups
available to them (Fig. 1.3). This list will vary, depending on the user’s location, as
system administrators have the discretion to allow or to block certain groups at a
given site. From the rear-most window in the figure, the user double-clicks on the
newsgroup of interest (here, bionet.genome.arabidopsis), which spawns the window
shown in the center. At the top of the center window is the current unread message
count, and any message within the list can be read by double-clicking on that par-
ticular line. This, in turn, spawns the last window (in the foreground), which shows
the actual message. If a user decides not to read any of the messages, or is done
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Figure 1.3. Using NewsWatcher to read postings to newsgroups. The list of newsgroups
that the user has subscribed to is shown in the Subscribed List window (left). The list of
new postings for the highlighted newsgroup (bionet.genome.arabidopsis) is shown in the
center window. The window in the foreground shows the contents of the posting selected
from the center window.

reading individual messages, the balance of the messages within the newsgroup (cen-
ter) window can be deleted by first choosing Select All from the File menu and then
selecting Mark Read from the News menu. Once the newsgroup window is closed,
the unread message count is reset to zero. Every time NewsWatcher is restarted, it
will automatically poll the news server for new messages that have been created
since the last session. As with most of the tools that will be discussed in this chapter,
news-reading capability is built into Web browsers such as Netscape Navigator and
Microsoft Internet Explorer.

FILE TRANSFER PROTOCOL

Despite the many advantages afforded by E-mail in transmitting messages, many
users have no doubt experienced frustration in trying to transmit files, or attachments,
along with an E-mail message. The mere fact that a file can be attached to an
E-mail message and sent does not mean that the recipient will be able to detach,
decode, and actually use the attached file. Although more cross-platform E-mail
packages such as Microsoft Exchange are being developed, the use of different E-
mail packages by people at different locations means that sending files via E-mail
is not an effective, foolproof method, at least in the short term. One solution to this
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problem is through the use of a file transfer protocol or FTP. The workings of
FTP are quite simple: a connection is made between a user’s computer (the client)
and a remote server, and that connection remains in place for the duration of the
FTP session. File transfers are very fast, at rates on the order of 5—10 kilobytes per
second, with speeds varying with the time of day, the distance between the client
and server machines, and the overall traffic on the network.

In the ordinary case, making an FTP connection and transferring files requires
that a user have an account on the remote server. However, there are many files and
programs that are made freely available, and access to those files does not require
having an account on each and every machine where these programs are stored.
Instead, connections are made using a system called anonymous FTP. Under this
system, the user connects to the remote machine and, instead of entering a username/
password pair, types anonymous as the username and enters their E-mail address
in place of a password. Providing one’s E-mail address allows the server’s system
administrators to compile access statistics that may, in turn, be of use to those actually
providing the public files or programs. An example of an anonymous FTP session
using UNIX is shown in Figure 1.4.

Although FTP actually occurs within the UNIX environment, Macintosh and PC
users can use programs that rely on graphical user interfaces (GUI, pronounced

$ ftp ftp.bio.indiana.edu

Connected to magpie.bio.indiana.edu.

220 iubio.bio.indiana.edu FTP server ready.

Name: anonymous

331 Guest login ok, send your complete e-mail address as password.
Password: ***dkkkk

230~ Welcome to IUBio archive!

230-

230- This is a user-supported archive for biology software and data.
230-

230- See the file Archive.Doc for details of this archive.

230-

230~ See IUBio Bio-Mirror archive of large data sets at

230- ftp to iubio.bio.indiana.edu, user: iubio, password: iubio
230- This includes GenBank, EMBL and DDBJ and other biosequence data.
230-

230- Report problems, uploads and other matters via e-mail to

230- archive@bio.indiana.edu.

230-

230 Guest login ok, access restrictions apply.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> ed /molbio/align/clustal

250 CWD command successful.

ftp> get clustalwl.75.unix.tar.2

local: clustalwl.75.unix.tar.Z remote: clustalwl.75.unix.tar.2

200 PORT command successful.

150 Opening BINARY mode data connection for clustalwl.75.unix.tar.2 (230379 bytes).
226 Transfer complete.

230379 bytes received in 0.45 seconds (500.75 Kbytes/s)

ftp> quit

221-You have transferred 230379 bytes in 1 files.

221-Total traffic for this session was 231859 bytes in 1 transfers.
221-Thank you for using the FTP service on iubio.bic.indiana.edu.
221 Goodbye.

Figure 1.4. Using UNIX FTP to download a file. An anonymous FTP session is established
with the molecular biology FTP server at the University of Indiana to download the CLUSTAL
W alignment program. The user inputs are shown in boldface.

1
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“gooey’’) to navigate through the UNIX directories on the FTP server. Users need
not have any knowledge of UNIX commands to download files; instead, they select
from pop-up menus and point and click their way through the UNIX file structure.
The most popular FTP program on the Macintosh platform for FTP sessions is Fetch.
A sample Fetch window is shown in Figure 1.5 to illustrate the difference between
using a GUI-based FTP program and the equivalent UNIX FTP in Figure 1.4. In the
figure, notice that the Automatic radio button (near the bottom of the second window
under the Get File button) is selected, meaning that Fetch will determine the appro-
priate type of file transfer to perform. This may be manually overridden by selecting
either Text or Binary, depending on the nature of the file being transferred. As a
rule, text files should be transferred as Text, programs or executables as Binary, and
graphic format files such as PICT and TIFF files as Raw Data.

- New Connection...

Enter host name, userid, and password (or
choose from the shortcut menu):

Host: [ftp.bio.indiana.edu |
User ID: [anunvmuus l
Passwurd; |..-..l..-..l..l... l

Directory: |!mu|biufalignfclustal

Shortcuts:  [v] Cancel | || 0K I

O ftp.bio.indiana.edu ‘BB
5 Mame Size Date Connected.
= - 01/10/99] File
(= - pesoasea| | clustalw1 .74 mac hq
O clustalw doc 33K 08/28/97 BinHesx
D clustalwl 74... 309K 06/29/38 626 21abytes
O clustalw1.74.mac.hgx | Get File... | Transfer
D clustalw1.75.... 225K 06/29/98 636_,524 bgt@!
O clustalwi7re.. SK 08/28/97 2,841 bytes/sec
O clustalwi? ..., 412K 08/28/97
[ ol - 06/29/98
| | @ Automatic
| O Text
) Binary 30,1 7

Figure 1.5. Using Fetch to download a file. An anonymous FTP session is established with
the molecular biology FTP server at the University of Indiana (top) to download the
CLUSTAL W alignment program (bottom). Notice the difference between this GUI-based
program and the UNIX equivalent illustrated in Figure 1.4.
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Although FTP is of tremendous use in the transfer of files from one computer to
another, it does suffer from some limitations. When working with FTP, once a user
enters a particular directory, they can only see the names of the directories or files.
To actually view what is within the files, it is necessary to physically download the
files onto one’s own computer. This inherent drawback led to the development of a
number of distributed document delivery systems (DDDS), interactive client-server
applications that allowed information to be viewed without having to perform a
download. The first generation of DDDS development led to programs like Gopher,
which allowed plain text to be viewed directly through a client-server application.
From this evolved the most widely known and widely used DDDS, namely, the
World Wide Web. The Web is an outgrowth of research performed at the European
Nuclear Research Council (CERN) in 1989 that was aimed at sharing research data
between several locations. That work led to a medium through which text, images,
sounds, and videos could be delivered to users on demand, anywhere in the world.

Navigation on the World Wide Web

Navigation on the Web does not require advance knowledge of the location of the
information being sought. Instead, users can navigate by clicking on specific text,
buttons, or pictures. These clickable items are collectively known as hyperlinks. Once
one of these hyperlinks is clicked, the user is taken to another Web location, which
could be at the same site or halfway around the world. Each document displayed on
the Web is called a Web page, and all of the related Web pages on a particular server
are collectively called a Web site. Navigation strictly through the use of hyperlinks
has been nicknamed ‘““Web surfing.”

Users can take a more direct approach to finding information by entering a
specific address. One of the strengths of the Web is that the programs used to view
Web pages (appropriately termed browsers) can be used to visit FTP and Gopher
sites as well, somewhat obviating the need for separate Gopher or FTP applications.
As such, a unified naming convention was introduced to indicate to the browser
program both the location of the remote site and, more importantly, the type of
information at that remote location so that the browser could properly display the
data. This standard-form address is known as a uniform resource locator, or URL,
and takes the general form protocol://computer.domain, where protocol specifies the
type of site and computer.domain specifies the location (Table 1.2). The http used
for the protocol in World Wide Web URLs stands for hypertext transfer protocol,
the method used in transferring Web files from the host computer to the client.

TABLE 1.2. Uniform Resource Locator (URL) Format
for Each Type of Transfer Protocol

General form protocol://computer.domain
FTP site Jtp://ftp.ncbi.nlm.nih.gov
Gopher site gopher://gopher.iubio.indiana.edu

Web site http://www.nhgri.nih.gov

13



14

BIOINFORMATICS AND THE INTERNET

Browsers

Browsers, which are used to look at Web pages, are client-server applications that
connect to a remote site, download the requested information at that site, and display
the information on a user’s monitor, then disconnecting from the remote host. The
information retrieved from the remote host is in a platform-independent format
named hypertext markup language (HTML). HTML code is strictly text-based, and
any associated graphics or sounds for that document exist as separate files in a
common format. For example, images may be stored and transferred in GIF format,
a proprietary format developed by CompuServe for the quick and efficient transfer
of graphics; other formats, such as JPEG and BMP, may also be used. Because of
this, a browser can display any Web page on any type of computer, whether it be a
Macintosh, IBM compatible, or UNIX machine. The text is usually displayed first,
with the remaining elements being placed on the page as they are downloaded. With
minor exception, a given Web page will look the same when the same browser is
used on any of the above platforms. The two major players in the area of browser
software are Netscape, with their Communicator product, and Microsoft, with Inter-
net Explorer. As with many other areas where multiple software products are avail-
able, the choice between Netscape and Internet Explorer comes down to one of
personal preference. Whereas the computer literati will debate the fine points of
difference between these two packages, for the average user, both packages perform
equally well and offer the same types of features, adequately addressing the Web-
browser needs of most users.

It is worth mentioning that, although the Web is by definition a visually-based
medium, it is also possible to travel through Web space and view documents without
the associated graphics. For users limited to line-by-line terminals, a browser called
Lynx is available. Developed at the University of Kansas, Lynx allows users to use
their keyboard arrow keys to highlight and select hyperlinks, using their return key
the same way that Netscape and Internet Explorer users would click their mouse.

Internet vs. Intranet

The Web is normally thought of as a way to communicate with people at a distance,
but the same infrastructure can be used to connect people within an organization.
Such intranets provide an easily accessible repository of relevant information, cap-
italizing on the simplicity of the Web interface. They also provide another channel
for broadcast or confidential communication within the organization. Having an in-
tranet is of particular value when members of an organization are physically sepa-
rated, whether in different buildings or different cities. Intranets are protected: that
is, people who are not on the organization’s network are prohibited from accessing
the internal Web pages; additional protections through the use of passwords are also
common.

Finding Information on the World Wide Web

Most people find information on the Web the old-fashioned way: by word of mouth,
either using lists such as those preceding the References in the chapters of this book
or by simply following hyperlinks put in place by Web authors. Continuously click-
ing from page to page can be a highly ineffective way of finding information, though,
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especially when the information sought is of a very focused nature. One way of
finding interesting and relevant Web sites is to consult virtual libraries, which are
curated lists of Web resources arranged by subject. Virtual libraries of special interest
to biologists include the WWW Virtual Library, maintained by Keith Robison at
Harvard, and the EBI BioCatalog, based at the European Bioinformatics Institute.
The URLs for these sites can be found in the list at the end of this chapter.

It is also possible to directly search the Web by using search engines. A search
engine is simply a specialized program that can perform full-text or keyword searches
on databases that catalog Web content. The result of a search is a hyperlinked list
of Web sites fitting the search criteria from which the user can visit any or all of the
found sites. However, the search engines use slightly different methods in compiling
their databases. One variation is the attempt to capture most or all of the text of
every Web page that the search engine is able to find and catalog (‘“Web crawling™).
Another technique is to catalog only the title of each Web page rather than its entire
text. A third is to consider words that must appear next to each other or only relatively
close to one another. Because of these differences in search-engine algorithms, the
results returned by issuing the same query to a number of different search engines
can produce wildly different results (Table 1.3). The other important feature of Table
1.3 is that most of the numbers are exceedingly large, reflecting the overall size of
the World Wide Web. Unless a particular search engine ranks its results by relevance
(e.g., by scoring words in a title higher than words in the body of the Web page),
the results obtained may not be particularly useful. Also keep in mind that, depending
on the indexing scheme that the search engine is using, the found pages may actually
no longer exist, leading the user to the dreaded ‘404 Not Found” error.

Compounding this problem is the issue of coverage—the number of Web pages
that any given search engine is actually able to survey and analyze. A comprehensive
study by Lawrence and Giles (1998) indicates that the coverage provided by any of
the search engines studied is both small and highly variable. For example, the HotBot
engine produced 57.5% coverage of what was estimated to be the size of the “‘in-
dexable Web,” whereas Lycos had only 4.41% coverage, a full order of magnitude
less than HotBot. The most important conclusion from this study was that the extent
of coverage increased as the number of search engines was increased and the results
from those individual searches were combined. Combining the results obtained from
the six search engines examined in this study produced coverage approaching 100%.

To address this point, a new class of search engines called meta-search engines
have been developed. These programs will take the user’s query and poll anywhere
from 5-10 of the ‘‘traditional” search engines. The meta-search engine will then

TABLE 1.3. Number of Hits Returned for Four Defined Search Queries on Some of the More
Popular Search and Meta-Search Engines

Search Engine Meta-Search Engine
Search Term HotBot Excite Infoseek Lycos Google MetaCrawler SavvySearch
Genetic mapping 478 1,040 4,326 9,395 7,043 62 58
Human genome 13,213 34,760 15,980 19,536 19,797 42 54
Positional cloning 279 735 1,143 666 3,987 40 52

Prostate cancer 14,044 53,940 24,376 33,538 23,100 0 57
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collect the results, filter out duplicates, and return a single, annotated list to the user.
One big advantage is that the meta-search engines take relevance statistics into ac-
count, returning much smaller lists of results. Although the hit list is substantially
smaller, it is much more likely to contain sites that directly address the original
query. Because the programs must poll a number of different search engines, searches
conducted this way obviously take longer to perform, but the higher degree of con-
fidence in the compiled results for a given query outweighs the extra few minutes
(and sometimes only seconds) of search time. Reliable and easy-to-use meta-search
engines include MetaCrawler and Savvy Search.

INTERNET RESOURCES FOR TOPICS PRESENTED IN CHAPTER 1

DomAIN NAMES
gTLD-MOU hitp://www.gtld-mou.org
Internet Software Consortium  http://www.isc.org

ELECTRONIC MAIL AND NEWSGROUPS

BIOSCI Newsgroups http://www.bio.net/docs/biosci. FAQ.html
Eudora http://www.eudora.com

Microsoft Exchange hitp://www.microsoft.com/exchange/
NewsWatcher ftp:/ftp.acns.nwu.edu/pub/mewswatcher/

FILE TRANSFER PrROTOCOL
Fetch 3.0/Mac
LeechFTP/PC

http://www.dartmouth.edu/pages/softdev/fetch.html
http://stud.fh-heilbronn.de/jdebis/leechftp/

INTERNET ACCESS

America Online
AT&T

Bell Atlantic
Bell Canada
CompuServe
Ricochet

Telus
Worldcom

VIRTUAL LIBRARIES

EBI BioCatalog

Amos’ WWW Links Page
NAR Database Collection
WWW Virtual Library

WORLD WIDE WEB BROWSERS

Internet Explorer
Lynx
Netscape Navigator

http://www.aol.com
http://www.att.com/worldnet
http://www.verizon.net
http://www.bell.ca
http://www.compuserve.com
http://www.ricochet.net
http://www.telus.net
http://www. worldcom.com

http://www.ebi.ac.uk/biocat/biocat.html
http://www.expasy.ch/alinks.html
http://www.nar.oupjournals.org
http://mcb.harvard.edu/BioLinks.html

http://explorer.msn.com/home.htm
ftp://ftp2.cc.ukans.edu/pub/lynx
http://home.netscape.com

WORLD WIDE WEB SEARCH ENGINES

AltaVista
Excite
Google

hitp://www.altavista.com
http://www.excite.com
http://www.google.com
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HotBot http://hotbot.lycos.com
Infoseek http://infoseek.go.com

Lycos http://www.lycos.com
Northern Light http://www.northernlight.com
WORLD WIDE WEB META-SEARCH ENGINES

MetaCrawler http://www.metacrawler.com
Savvy Search http://www.savvysearch.com
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Most biologists are familiar with the use of animal models to study human diseases.
Although a disease that occurs in humans may not be found in exactly the same
form in animals, often an animal disease shares enough attributes with a human
counterpart to allow data gathered on the animal disease to be used to make infer-
ences about the process in humans. Mathematical models describing the forces in-
volved in musculoskeletal motions can be built by imagining that muscles are com-
binations of springs and hydraulic pistons and bones are lever arms, and, often times,
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such models allow meaningful predictions to be made and tested about the obviously
much more complex biological system under consideration. The more closely and
elegantly a model follows a real phenomenon, the more useful it is in predicting or
understanding the natural phenomenon it is intended to mimic.

In this same vein, some 12 years ago, the National Center for Biotechnology
Information (NCBI) introduced a new model for sequence-related information. This
new and more powerful model made possible the rapid development of software and
the integration of databases that underlie the popular Entrez retrieval system and on
which the GenBank database is now built (cf. Chapter 7 for more information on
Entrez). The advantages of the model (e.g., the ability to move effortlessly from the
published literature to DNA sequences to the proteins they encode, to chromosome
maps of the genes, and to the three-dimensional structures of the proteins) have been
apparent for years to biologists using Entrez, but very few biologists understand the
foundation on which this model is built. As genome information becomes richer and
more complex, more of the real, underlying data model is appearing in common
representations such as GenBank files. Without going into great detail, this chapter
attempts to present a practical guide to the principles of the NCBI data model and
its importance to biologists at the bench.

Some Examples of the Model

The GenBank flatfile is a ‘““DNA-centered”’ report, meaning that a region of DNA
coding for a protein is represented by a “CDS feature,” or ““‘coding region,” on the
DNA. A gqualifier (/translation="MLLYY"”) describes a sequence of amino
acids produced by translating the CDS. A limited set of additional features of the
DNA, such as mat_peptide, are occasionally used in GenBank flatfiles to de-
scribe cleavage products of the (possibly unnamed) protein that is described by a
/translation, but clearly this is not a satisfactory solution. Conversely, most
protein sequence databases present a ‘‘protein-centered” view in which the connec-
tion to the encoding gene may be completely lost or may be only indirectly refer-
enced by an accession number. Often times, these connections do not provide the
exact codon-to-amino acid correspondences that are important in performing muta-
tion analysis.

The NCBI data model deals directly with the two sequences involved: a DNA
sequence and a protein sequence. The translation process is represented as a link
between the two sequences rather than an annotation on one with respect to the
other. Protein-related annotations, such as peptide cleavage products, are represented
as features annotated directly on the protein sequence. In this way, it becomes very
natural to analyze the protein sequences derived from translations of CDS features
by BLAST or any other sequence search tool without losing the precise linkage back
to the gene. A collection of a DNA sequence and its translation products is called a
Nuc-prot set, and this is how such data is represented by NCBI. The GenBank flatfile
format that many readers are already accustomed to is simply a particular style of
report, one that is more ‘“human-readable’” and that ultimately flattens the connected
collection of sequences back into the familiar one-sequence, DNA-centered view.
The navigation provided by tools such as Entrez much more directly reflects the
underlying structure of such data. The protein sequences derived from GenBank
translations that are returned by BLAST searches are, in fact, the protein sequences
from the Nuc-prot sets described above.
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The standard GenBank format can also hide the multiple-sequence nature of
some DNA sequences. For example, three genomic exons of a particular gene are
sequenced, and partial flanking, noncoding regions around the exons may also be
available, but the full-length sequences of these intronic sequences may not yet be
available. Because the exons are not in their complete genomic context, there would
be three GenBank flatfiles in this case, one for each exon. There is no explicit
representation of the complete set of sequences over that genomic region; these three
exons come in genomic order and are separated by a certain length of unsequenced
DNA. In GenBank format there would be a Segment line of the form SEGMENT 1
of 3 in the first record, SEGMENT 2 of 3 in the second, and SEGMENT 3 of 3 in
the third, but this only tells the user that the lines are part of some undefined, ordered
series (Fig. 2.1A). Out of the whole GenBank release, one locates the correct Segment
records to place together by an algorithm involving the LOCUS name. All segments
that go together use the same first combination of letters, ending with the numbers
appropriate to the segment, e.g., HSDDT1, HSDDT2, and HSDDT3. Obviously, this
complicated arrangement can result in problems when LOCUS names include num-
bers that inadvertently interfere with such series. In addition, there is no one sequence
record that describes the whole assembled series, and there is no way to describe
the distance between the individual pieces. There is no segmenting convention in
the EMBL sequence database at all, so records derived from that source or distributed
in that format lack even this imperfect information.

The NCBI data model defines a sequence type that directly represents such a
segmented series, called a “segmented sequence.”” Rather than containing the letters
A, G, C, and T, the segmented sequence contains instructions on how it can be built
from other sequences. Considering again the example above, the segmented sequence
would contain the instructions ‘“‘take all of HSDDT1, then a gap of unknown length,
then all of HSDDT2, then a gap of unknown length, then all of HSDDT3.” The
segmented sequence itself can have a name (e.g., HSDDT), an accession number,
features, citations, and comments, like any other GenBank record. Data of this type
are commonly stored in a so-called ‘“‘Seg-set” containing the sequences HSDDT,
HSDDT1, HSDDT2, HSDDT3 and all of their connections and features. When the
GenBank release is made, as in the case of Nuc-prot sets, the Seg-sets are broken
up into multiple records, and the segmented sequence itself is not visible. However,
GenBank, EMBL, and DDBJ have recently agreed on a way to represent these
constructed assemblies, and they will be placed in a new CON division, with CON
standing for “contig” (Fig. 2.1B). In the Entrez graphical view of segmented se-
quences, the segmented sequence is shown as a line connecting all of its component
sequences (Fig. 2.1C).

An NCBI segmented sequence does not require that there be gaps between the
individual pieces. In fact the pieces can overlap, unlike the case of a segmented
series in GenBank format. This makes the segmented sequence ideal for representing
large sequences such as bacterial genomes, which may be many megabases in length.
This is what currently is done within the Entrez Genomes division for bacterial
genomes, as well as other complete chromosomes such as yeast. The NCBI Software
Toolkit (Ostell, 1996) contains functions that can gather the data that a segmented
sequence refers to “‘on the fly,”” including constituent sequence and features, and this
information can automatically be remapped from the coordinates of a small, indi-
vidual record to that of a complete chromosome. This makes it possible to provide
graphical views, GenBank flatfile views, or FASTA views or to perform analyses on
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HSDDT1 166 bp DNA PRI 01-FEB-2000
Homo sapiens D-dopachrome tautomerase (DDT) gene, exon 1.
AF(012432

AF012432.1 GI:2352911

i of 3

HSDDT?2 216 bp DNA PRI 01-FEB-2000
Homo sapiens D-dopachrome tautomerase (DDT) gene, exon 2.
AF012433

AF012433.1 GI:2352912

2 of 3

HSDDT3 271 bp DNA PRI 01-FEB-2000
Homo sapiens D-dopachrome tautomerase (DDT) gene, exon 3 and
complete cds.

AF012434

AF012434.1 GI:2352913

é of 3

HSDDT 653 bp DNA CON 01-FEB-2000
Homo sapiens D-dopachrome tautomerase (DDT) gene, complete cds.
AH006997

AHO006997.2 GI:6849043

human.
Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Mammalia;
Eutheria; Primates; Catarrhini; Hominidae; Homo.
1 (bases 1 to 653)
Esumi,N., Budarf,M., Ciccarelli,L., Sellinger,B., Kozak,C.A.
and Wistow,G.
Conserved gene structure and genomic linkage for D-dopachrome
tautomerase (DDT) and MIF
Mamm. Genome 9 (9), 753-757 (1998)
98384542
9716662
2 (bases 1 to 653)
Esumi,N. and Wistow,G.
Direct Submission
Submitted (07-JUL-1997) Molecular Structure and Function, NEI,
Building 6, Rm. 331, NIH, Bethesda, MD 20892, USA
On Feb 1, 2000 this sequence version replaced gi:2352914.
Location/Qualifiers
.653
/organism="Homo sapiens"
/db_xref="taxon:9606"
/chromosome="22"
join(AF012432.1:1..166,gap(),AF012433.1:1..216,gap(},
AF012434.1:1..271)
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whole chromosomes quite easily, even though data exist only in small, individual
pieces. This ability to readily assemble a set of related sequences on demand for any
region of a very large chromosome has already proven to be valuable for bacterial
genomes. Assembly on demand will become more and more important as larger and
larger regions are sequenced, perhaps by many different groups, and the notion that
an investigator will be working on one huge sequence record becomes completely
impractical.

What Does ASN.1 Have to Do With It?

The NCBI data model is often referred to as, and confused with, the “NCBI ASN.1”
or “ASN.1 Data Model.” Abstract Syntax Notation 1 (ASN.1) is an International
Standards Organization (ISO) standard for describing structured data that reliably
encodes data in a way that permits computers and software systems of all types to
reliably exchange both the structure and the content of the entries. Saying that a data
model is written in ASN.1 is like saying a computer program is written in C or
FORTRAN. The statement identifies the language; it does not say what the program
does. The familiar GenBank flatfile was really designed for humans to read, from a
DNA-centered viewpoint. ASN.1 is designed for a computer to read and is amenable
to describing complicated data relationships in a very specific way. NCBI describes
and processes data using the ASN.1 format. Based on that single, common format,
a number of human-readable formats and tools are produced, such as Entrez,
GenBank, and the BLAST databases. Without the existence of a common format
such as this, the neighboring and hard-link relationships that Entrez depends on
would not be possible. This chapter deals with the structure and content of the NCBI
data model and its implications for biomedical databases and tools. Detailed discus-
sions about the choice of ASN.1 for this task and its overall form can be found
elsewhere (Ostell, 1995).

What to Define?

We have alluded to how the NCBI data model defines sequences in a way that
supports a richer and more explicit description of the experimental data than can be

Figure 2.1. (A) Selected parts of GenBank-formatted records in a segmented sequence.
GenBank format historically indicates merely that records are part of some ordered series;
it offers no information on what the other components are or how they are connected.
To see the complete view of these records, see http://www.ncbi.nlm.nih.gov/htbin-post/En-
trez/query?uid=6849043&form=6&db=n&Dopt=g. (B) Representation of segmented se-
quences in the new CON (contig) division. A new extension of GenBank format allows the
details of the construction of segmented records to be presented. The CONTIG line can
include individual accessions, gaps of known length, and gaps of unknown length. The
individual components can still be displayed in the traditional form, although no features
or sequences are present in this format. (C) Graphical representation of a segmented se-
quence. This view displays features mapped to the coordinates of the segmented sequence.
The segments include all exonic and untranslated regions plus 20 base pairs of sequence
at the ends of each intron. The segment gaps cover the remaining intronic sequence.
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obtained with the GenBank format. The details of the model are important, and will
be expanded on in the ensuing discussion. At this point, we need to pause and briefly
describe the reasoning and general principles behind the model as a whole.

There are two main reasons for putting data on a computer: retrieval and dis-
covery. Retrieval is basically being able to get back out what was put in. Amassing
sequence information without providing a way to retrieve it makes the sequence
information, in essence, useless. Although this is important, it is even more valuable
to be able to get back from the system more knowledge than was put in to begin
with—that is, to be able to use the information to make biological discoveries.
Scientists can make these kinds of discoveries by discerning connections between
two pieces of information that were not known when the pieces were entered sep-
arately into the database or by performing computations on the data that offer new
insight into the records. In the NCBI data model, the emphasis is on facilitating
discovery; that means the data must be defined in a way that is amenable to both
linkage and computation.

A second, general consideration for the model is stability. NCBI is a US Gov-
ernment agency, not a group supported year-to-year by competitive grants. Thus, the
NCBI staff takes a very long-term view of its role in supporting bioinformatics
efforts. NCBI provides large-scale information systems that will support scientific
inquiry well into the future. As anyone who is involved in biomedical research
knows, many major conceptual and technical revolutions can happen when dealing
with such a long time span. Somehow, NCBI must address these changing views
and needs with software and data that may have been created years (or decades)
earlier. For that reason, basic observations have been chosen as the central data
elements, with interpretations and nomenclature (elements more subject to change)
being placed outside the basic, core representation of the data.

Taking all factors into account, NCBI uses four core data elements: bibliographic
citations, DNA sequences, protein sequences, and three-dimensional structures. In
addition, two projects (taxonomy and genome maps) are more interpretive but none-
theless are so important as organizing and linking resources that NCBI has built a
considerable base in these areas as well.

PUBs: PUBLICATIONS OR PERISH

Publication is at the core of every scientific endeavor. It is the common process
whereby scientific information is reviewed, evaluated, distributed, and entered into
the permanent record of scientific progress. Publications serve as vital links between
factual databases of different structures or content domains (e.g., a record in a se-
quence database and a record in a genetic database may cite the same article). They
serve as valuable entry points into factual databases (‘I have read an article about
this, now I want to see the primary data’).

Publications also act as essential annotation of function and context to records
in factual databases. One reason for this is that factual databases have a structure
that is essential for efficient use of the database but may not have the representational
capacity to set forward the full biological, experimental, or historical context of a
particular record. In contrast, the published paper is limited only by language and
contains much fuller and more detailed explanatory information than will ever be in
a record in a factual database. Perhaps more importantly, authors are evaluated by
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their scientific peers based on the content of their published papers, not by the content
of the associated database records. Despite the best of intentions, scientists move on
and database records become static, even though the knowledge about them has
expanded, and there is very little incentive for busy scientists to learn a database
system and keep records based on their own laboratory studies up to date.

Generally, the form and content of citations have not been thought about care-
fully by those designing factual databases, and the quality, form, and content of
citations can vary widely from one database to the next. Awareness of the importance
of having a link to the published literature and the realization that bibliographic
citations are much less volatile than scientific knowledge led to a decision that a
careful and complete job of defining citations was a worthwhile endeavor. Some
components of the publication specification described below may be of particular
interest to scientists or users of the NCBI databases, but a full discussion of all the
issues leading to the decisions governing the specifications themselves would require
another chapter in itself.

Authors

Author names are represented in many formats by various databases: last name only,
last name and initials, last name-comma-initials, last name and first name, all authors
with initials and the last with a full first name, with or without honorifics (Ph.D.)
or suffixes (Jr., III), to name only a few. Some bibliographic databases (such as
MEDLINE) might represent only a fixed number of authors. Although this inconsis-
tency is merely ugly to a human reader, it poses severe problems for database systems
incorporating names from many sources and providing functions as simple as looking
up citations by author last name, such as Entrez does. For this reason, the specifi-
cation provides two alternative forms of author name representation: one a simple
string and the other a structured form with fields for last name, first name, and so
on. When data are submitted directly to NCBI or in cases when there is a consistent
format of author names from a particular source (such as MEDLINE), the structured
form is used. When the form cannot be deciphered, the author name remains as a
string. This limits its use for retrieval but at least allows data to be viewed when the
record is retrieved by other means.

Even the structured form of author names must support diversity, since some
sources give only initials whereas others provide a first and middle name. This is
mentioned to specifically emphasize two points. First, the NCBI data model is de-
signed both to direct our view of the data into a more useful form and to accom-
modate the available existing data. (This pair of functions can be confusing to people
reading the specification and seeing alternative forms of the same data defined.)
Second, software developers must be aware of this range of representations and
accommodate whatever form had to be used when a particular source was being
converted. In general, NCBI tries to get as much of the data into a uniform, structured
form as possible but carries the rest in a less optimal way rather than losing it
altogether.

Author affiliations (i.e., authors’ institutional addresses) are even more compli-
cated. As with author names, there is the problem of supporting both structured forms
and unparsed strings. However, even sources with reasonably consistent author name
conventions often produce affiliation information that cannot be parsed from text into
a structured format. In addition, there may be an affiliation associated with the whole
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author list, or there may be different affiliations associated with each author. The
NCBI data model allows for both scenarios. At the time of this writing only the first
form is supported in either MEDLINE or GenBank, both types may appear in pub-
lished articles.

Articles

The most commonly cited bibliographic entity in biological science is an article in
a journal; therefore, the citation formats of most biological databases are defined
with that type in mind. However, ‘articles” can also appear in books, manuscripts,
theses, and now in electronic journals as well. The data model defines the fields
necessary to cite a book, a journal, or a manuscript. An article citation occupies one
field; other fields display additional information necessary to uniquely identify the
article in the book, journal, or manuscript—the author(s) of the article (as opposed
to the author or editor of the book), the title of the article, page numbers, and so on.

There is an important distinction between the fields necessary to uniquely iden-
tify a published article from a citation and those necessary to describe the same
article meaningfully to a database user. The NCBI Citation Matching Service takes
fields from a citation and attempts to locate the article to which they refer. In this
process, a successful match would involve only correctly matching the journal title,
the year, the first page of the article, and the last name of an author of the article.
Other information (e.g., article title, volume, issue, full pages, author list) is useful
to look at but very often is either not available or outright incorrect. Once again, the
data model must allow the minimum information set to come in as a citation, be
matched against MEDLINE, and then be replaced by a citation having the full set
of desired fields obtained from MEDLINE to produce accurate, useful data for con-
sumption by the scientific public.

Patents

With the advent of patented sequences it became necessary to cite a patent as a
bibliographic entity instead of an article. The data model supports a very complete
patent citation, a format developed in cooperation with the US Patent Office. In
practice, however, patented sequences tend to have limited value to the scientific
public. Because a patent is a legal document, not a scientific one, its purpose is to
present and support the claims of the patent, not to fully describe the biology of the
sequence itself. It is often prepared in a lawyer’s office, not by the scientist who did
the research. The sequences presented in the patent may function only to illustrate
some discreet aspect of the patent, rather than being the focus of the document.
Organism information, location of biological features, and so on may not appear at
all if they are not germane to the patent. Thus far, the vast majority of sequences
appearing in patents also appear in a more useful form (to scientists) in the public
databases.

In NCBI’s view, the main purpose of listing patented sequences in GenBank is
to be able to retrieve sequences by similarity searches that may serve to locate patents
related to a given sequence. To make a legal determination in the case, however, one
would still have to examine the full text of the patent. To evaluate the biology of
the sequence, one generally must locate information other than that contained in the
patent. Thus, the critical linkage is between the sequence and its patent number.
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Additional fields in the patent citation itself may be of some interest, such as the
title of the patent and the names of the inventors.

Citing Electronic Data Submission

A relatively new class of citations comprises the act of data submission to a database,
such as GenBank. This is an act of publication, similar but not identical to the
publication of an article in a journal. In some cases, data submission precedes article
publication by a considerable period of time, or a publication regarding a particular
sequence may never appear in press. Because of this, there is a separate citation
designed for deposited sequence data. The submission citation, because it is indeed
an act of publication, may have an author list, showing the names of scientists who
worked on the record. This may or may not be the same as the author list on a
subsequently published paper also cited in the same record. In most cases, the sci-
entist who submitted the data to the database is also an author on the submission
citation. (In the case of large sequencing centers, this may not always be the case.)
Finally, NCBI has begun the practice of citing the update of a record with a sub-
mission citation as well. A comment can be included with the update, briefly de-
scribing the changes made in the record. All the submission citations can be retained
in the record, providing a history of the record over time.

MEDLINE and PubMed Identifiers

Once an article citation has been matched to MEDLINE, the simplest and most
reliable key to point to the article is the MEDLINE unique identifier (MUID). This
is simply an integer number. NCBI provides many services that use MUID to retrieve
the citation and abstract from MEDLINE, to link together data citing the same article,
or to provide Web hyperlinks.

Recently, in concert with MEDLINE and a large number of publishers, NCBI
has introduced PubMed. PubMed contains all of MEDLINE, as well as citations
provided directly by the publishers. As such, PubMed contains more recent articles
than MEDLINE, as well as articles that may never appear in MEDLINE because of
their subject matter. This development led NCBI to introduce a new article identifier,
called a PubMed identifier (PMID). Articles appearing in MEDLINE will have both
a PMID and an MUID. Articles appearing only in PubMed will have only a PMID.
PMID serves the same purpose as MUID in providing a simple, reliable link to the
citation, a means of linking records together, and a means of setting up hyperlinks.

Publishers have also started to send information on ahead-of-print articles to
PubMed, so this information may now appear before the printed journal. A new
project, PubMed Central, is meant to allow electronic publication to occur in lieu
of or ahead of publication in a traditional, printed journal. PubMed Central records
contain the full text of the article, not just the abstract, and include all figures and
references.

The NCBI data model stores most citations as a collection called a Pub-equiv,
a set of equivalent citations that includes a reliable identifier (PMID or MUID) and
the citation itself. The presence of the citation form allows a useful display without
an extra retrieval from the database, whereas the identifier provides a reliable key
for linking or indexing the same citation in the record.
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SEQ-IDs: WHAT’'S IN A NAME?

The NCBI data model defines a whole class of objects called Sequence Identifiers
(Seqg-id). There has to be a whole class of such objects because NCBI integrates
sequence data from many sources that name sequence records in different ways and
where, of course, the individual names have different meanings. In one simple case,
PIR, SWISS-PROT, and the nucleotide sequence databases all use a string called an
“accession number,” all having a similar format. Just saying ‘“A10234” is not
enough to uniquely identify a sequence record from the collection of all these data-
bases. One must distinguish “A10234” in SWISS-PROT from “A10234” in PIR.
(The DDBJ/EMBL/GenBank nucleotide databases share a common set of accession
numbers; therefore, ““A12345” in EMBL is the same as “A12345” in GenBank or
DDBJ.) To further complicate matters, although the sequence databases define their
records as containing a single sequence, PDB records contain a single structure,
which may contain more than one sequence. Because of this, a PDB Seq-id contains
a molecule name and a chain ID to identify a single unique sequence. The subsections
that follow describe the form and use of a few commonly used types of Seq-ids.

Locus Name

The locus appears on the LOCUS line in GenBank and DDBJ records and in the ID
line in EMBL records. These originally were the only identifier of a discrete
GenBank record. Like a genetic locus name, it was intended to act both as a unique
identifier for the record and as a mnemonic for the function and source organism of
the sequence. Because the LOCUS line is in a fixed format, the locus name is re-
stricted to ten or fewer numbers and uppercase letters. For many years in GenBank,
the first three letters of the name were an organism code and the remaining letters
a code for the gene (e.g., HUMHBB was used for “human (B-globin region”). How-
ever, as with genetic locus names, locus names were changed when the function of
a region was discovered to be different from what was originally thought. This
instability in locus names is obviously a problem for an identifier for retrieval. In
addition, as the number of sequences and organisms represented in GenBank in-
creased geometrically over the years, it became impossible to invent and update such
mnemonic names in an efficient and timely manner. At this point, the locus name is
dying out as a useful name in GenBank, although it continues to appear prominently
on the first line of the flatfile to avoid breaking the established format.

Accession Number

Because of the difficulties in using the locus/ID name as the unique identifier for a
nucleotide sequence record, the International Nucleotide Sequence Database Collab-
orators (DDBJ/EMBL/GenBank) introduced the accession number. It intentionally
carries no biological meaning, to ensure that it will remain (relatively) stable. It
originally consisted of one uppercase letter followed by five digits. New accessions
consist of two uppercase letters followed by six digits. The first letters were allocated
to the individual collaborating databases so that accession numbers would be unique
across the Collaboration (e.g., an entry beginning with a “U”” was from GenBank).

The accession number was an improvement over the locus/ID name, but, with
use, problems and deficiencies became apparent. For example, although the accession
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is stable over time, many users noticed that the sequence retrieved by a particular
accession was not always the same. This is because the accession identifies the whole
database record. If the sequence in a record was updated (say by the insertion of
1000 bp at the beginning), the accession number did not change, as it was an updated
version of the same record. If one had analyzed the original sequence and recorded
that at position 100 of accession U0O0001 there was a putative protein-binding site,
after the update a completely different sequence would be found at position 100!

The accession number appears on the ACCESSION line of the GenBank record.
The first accession on the line, called the ‘““primary’” accession, is the key for retriev-
ing this record. Most records have only this type of accession number. However,
other accessions may follow the primary accession on the ACCESSION line. These
“secondary’’ accessions are intended to give some notion of the history of the record.
For example, if U0O0001 and U0O0002 were merged into a single updated record, then
U00001 would be the primary accession on the new record and U00002 would
appear as a secondary accession. In standard practice, the U00002 record would be
removed from GenBank, since the older record had become obsolete, and the sec-
ondary accessions would allow users to retrieve whatever records superseded the old
one. It should also be noted that, historically, secondary accession numbers do not
always mean the same thing; therefore, users should exercise care in their interpre-
tations. (Policies at individual databases differed, and even shifted over time in a
given database.) The use of secondary accession numbers also caused problems in
that there was still not enough information to determine exactly what happened and
why. Nonetheless, the accession number remains the most controlled and reliable
way to point to a record in DDBJ/EMBL/GenBank.

gi Number

In 1992, NCBI began assigning GenlInfo Identifiers (gi) to all sequences processed
into Entrez, including nucleotide sequences from DDBJ/EMBL/GenBank, the protein
sequences from the translated CDS features, protein sequences from SWISS-PROT,
PIR, PRF, PDB, patents, and others. The gi is assigned in addition to the accession
number provided by the source database. Although the form and meaning of the
accession Seq-id varied depending on the source, the meaning and form of the gi is
the same for all sequences regardless of the source.

The gi is simply an integer number, sometimes referred to as a GI number. It is
an identifier for a particular sequence only. Suppose a sequence enters GenBank
and is given an accession number UQ0001. When the sequence is processed internally
at NCBI, it enters a database called ID. ID determines that it has not seen U00001
before and assigns it a gi number—for example, 54. Later, the submitter might
update the record by changing the citation, so U00001 enters ID again. ID, recog-
nizing the record, retrieves the first UO0O001 and compares its sequence with the new
one. If the two are completely identical, ID reassigns gi 54 to the record. If the
sequence differs in any way, even by a single base pair, it is given a new gi number,
say 88. However, the new sequence retains accession number U0O0001 because of
the semantics of the source database. At this time, ID marks the old record (gi 54)
with the date it was replaced and adds a ‘‘history” indicating that it was replaced
by gi 88. ID also adds a history to gi 88 indicating that it replaced gi 54.

The gi number serves three major purposes:
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» It provides a single identifier across sequences from many sources.

It provides an identifier that specifies an exact sequence. Anyone who analyzes
gi 54 and stores the analysis can be sure that it will be valid as long as U00001
has gi 54 attached to it.

It is stable and retrievable. NCBI keeps the last version of every gi number.
Because the history is included in the record, anyone who discovers that gi
54 is no longer part of the GenBank release can still retrieve it from ID through
NCBI and examine the history to see that it was replaced by gi 88. Upon
aligning gi 54 to gi 88 to determine their relationship, a researcher may decide
to remap the former analysis to gi 88 or perhaps to reanalyze the data. This
can be done at any time, not just at GenBank release time, because gi 54 will
always be available from ID.

For these reasons, all internal processing of sequences at NCBI, from computing
Entrez sequence neighbors to determining when new sequence should be processed
or producing the BLAST databases, is based on gi numbers.

Accession.Version Combined Identifier

Recently, the members of the International Nucleotide Sequence Database Collabo-
ration (GenBank, EMBL, and DDBJ) introduced a “‘better” sequence identifier, one
that combines an accession (which identifies a particular sequence record) with a
version number (which tracks changes to the sequence itself). It is expected that this
kind of Seq-id will become the preferred method of citing sequences.

Users will still be able to retrieve a record based on the accession number alone,
without having to specify a particular version. In that case, the latest version of the
record will be obtained by default, which is the current behavior for queries using
Entrez and other retrieval programs.

Scientists who are analyzing sequences in the database (e.g., aligning all alcohol
dehydrogenase sequences from a particular taxonomic group) and wish to have their
conclusions remain valid over time will want to reference sequences by accession
and the given version number. Subsequent modification of one of the sequences by
its owner (e.g., 5’ extension during a study of the gene’s regulation) will result in
the version number being incremented appropriately. The analysis that cited acces-
sion and version remains valid because a query using both the accession and version
will return the desired record.

Combining accession and version makes it clear to the casual user that a se-
quence has changed since an analysis was done. Also, determining how many times
a sequence has changed becomes trivial with a version number. The accession.version
number appears on the VERSION line of the GenBank flatfile. For sequence retrieval,
the accession.version is simply mapped to the appropriate gi number, which remains
the underlying tracking identifier at NCBI.

Accession Numbers on Protein Sequences

The International Sequence Database Collaborators also started assigning acces-
sion.version numbers to protein sequences within the records. Previously, it was
difficult to reliably cite the translated product of a given coding region feature, except



BIOSEQs: SEQUENCES

by its gi number. This limited the usefulness of translated products found in BLAST
results, for example. These sequences will now have the same status as protein
sequences submitted directly to the protein databases, and they have the benefit of
direct linkage to the nucleotide sequence in which they are encoded, showing up as
a CDS feature’s /protein_id qualifier in the flatfile view. Protein accessions in
these records consist of three uppercase letters followed by five digits and an integer
indicating the version.

Reference Seq-id

The NCBI RefSeq project provides a curated, nonredundant set of reference sequence
standards for naturally occurring biological molecules, ranging from chromosomes
to transcripts to proteins. RefSeq identifiers are in accession.version form but are
prefixed with NC_ (chromosomes), NM_ (mRNAs), NP_ (proteins), or NT_ (con-
structed genomic contigs). The NG_ prefix will be used for genomic regions or gene
clusters (e.g., immunoglobulin region) in the future. RefSeq records are a stable
reference point for functional annotation, point mutation analysis, gene expression
studies, and polymorphism discovery.

General Seqg-id

The General Seqg-id is meant to be used by genome centers and other groups as a
way of identifying their sequences. Some of these sequences may never appear in
public databases, and others may be preliminary data that eventually will be sub-
mitted. For example, records of human chromosomes in the Entrez Genomes division
contain multiple physical and genetic maps, in addition to sequence components.
The physical maps are generated by various groups, and they use General Seq-ids
to identify the proper group.

Local Seqg-id

The Local sequence identifier is most prominently used in the data submission tool
Sequin (see Chapter 4). Each sequence will eventually get an accession.
version identifier and a gi number, but only when the completed submission has
been processed by one of the public databases. During the submission process, Se-
quin assigns a local identifier to each sequence. Because many of the software tools
made by NCBI require a sequence identifier, having a local Seq-id allows the use
of these tools without having to first submit data to a public database.

BIOSEQs: SEQUENCES

The Bioseq, or biological sequence, is a central element in the NCBI data model. It
comprises a single, continuous molecule of either nucleic acid or protein, thereby
defining a linear, integer coordinate system for the sequence. A Bioseq must have at
least one sequence identifier (Seq-id). It has information on the physical type of
molecule (DNA, RNA, or protein). It may also have annotations, such as biological
features referring to specific locations on specific Biosegs, as well as descriptors.
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Descriptors provide additional information, such as the organism from which the
molecule was obtained. Information in the descriptors describe the entire Bioseq.

However, the Bioseq isn’t necessarily a fully sequenced molecule. It may be a
segmented sequence in which, for example, the exons have been sequenced but not
all of the intronic sequences have been determined. It could also be a genetic or
physical map, where only a few landmarks have been positioned.

Sequences are the Same

All Biosegs have an integer coordinate system, with an integer length value, even if
the actual sequence has not been completely determined. Thus, for physical maps,
or for exons in highly spliced genes, the spacing between markers or exons may be
known only from a band on a gel. Although the coordinates of a fully sequenced
chromosome are known exactly, those in a genetic or physical map are a best guess,
with the possibility of significant error from the ‘“‘real” coordinates.

Nevertheless, any Bioseq can be annotated with the same kinds of information.
For example, a gene feature can be placed on a region of sequenced DNA or at a
discrete location on a physical map. The map and the sequence can then be aligned
on the basis of their common gene features. This greatly simplifies the task of writing
software that can display these seemingly disparate kinds of data.

Sequences are Different

Despite the benefits derived from having a common coordinate system, the different
Bioseq classes do differ in the way they are represented. The most common classes
(Fig. 2.2) are described briefly below.

Virtual Bioseq. In the virtual Bioseq, the molecule type is known, and its
length and topology (e.g., linear, circular) may also be known, but the actual se-
quence is not known. A virtual Bioseq can represent an intron in a genomic molecule
in which only the exon sequences have been determined. The length of the putative
sequence may be known only by the size of a band on an agarose gel.

Figure 2.2. Classes of Bioseqgs. All Biosegs represent a single, continuous molecule of nu-
cleic acid or protein, although the complete sequence may not be known. In a virtual
Bioseq, the type of molecule is known, but the sequence is not known, and the precise
length may not be known (e.g., from the size of a band on an electrophoresis gel). A raw
Bioseq contains a single contiguous string of bases or residues. A segmented Bioseq points
to its components, which are other raw or virtual Biosegs (e.g., sequenced exons and un-
determined introns). A constructed sequence takes its original components and subsumes
them, resulting in a Bioseq that contains the string of bases or residues and a “history” of
how it was built. A map Bioseq places genes or physical markers, rather than sequence, on
its coordinates. A delta Bioseq can represent a segmented sequence but without the re-
quirement of assigning identifiers to each component (including gaps of known length),
although separate raw sequences can still be referenced as components. The delta sequence
is used for unfinished high-throughput genome sequences (HTGS) from genome centers
and for genomic contigs.
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Raw Bioseq. This is what most people would think of as a sequence, a single
contiguous string of bases or residues, in which the actual sequence is known. The
length is obviously known in this case, matching the number of bases or residues in
the sequence.

Segmented Bioseq. A segmented Bioseq does not contain raw sequences but
instead contains the identifiers of other Bioseqs from which it is made. This type of
Bioseq can be used to represent a genomic sequence in which only the exons are
known. The “‘parts” in the segmented Bioseq would be the individual, raw Bioseqs
representing the exons and the virtual Bioseqs representing the introns.

Delta Bioseq. Delta Bioseqs are used to represent the unfinished high-through-
put genome sequences (HTGS) derived at the various genome sequencing centers.
Using delta Bioseqs instead of segmented Bioseqs means that only one Seq-id is
needed for the entire sequence, even though subregions of the Bioseq are not known
at the sequence level. Implicitly, then, even at the early stages of their presence in
the databases, delta Bioseqs maintain the same accession number.

Map Bioseq. Used to represent genetic and physical maps, a map Bioseq is
similar to a virtual Bioseq in that it has a molecule type, perhaps a topology, and a
length that may be a very rough estimate of the molecule’s actual length. This in-
formation merely supplies the coordinate system, a property of every Bioseq. Given
this coordinate system for a genetic map, we estimate the positions of genes on it
based on genetic evidence. The table of the resulting gene features is the essential
data of the map Bioseq, just as bases or residues constitute the raw Bioseq’s data.

BIOSEQ-SETs: COLLECTIONS OF SEQUENCES

A biological sequence is often most appropriately stored in the context of other,
related sequences. For example, a nucleotide sequence and the sequences of the
protein products it encodes naturally belong in a set. The NCBI data model provides
the Bioseq-set for this purpose.

A Bioseg-set can have a list of descriptors. When packaged on a Bioseq, a
descriptor applies to all of that Bioseq. When packaged on a Bioseq-set, the descrip-
tor applies to every Bioseq in the set. This arrangement is convenient for attaching
publications and biological source information, which are expected on all sequences
but frequently are identical within sets of sequences. For example, both the DNA
and protein sequences are obviously from the same organism, so this descriptor
information can be applied to the set. The same logic may apply to a publication.

The most common Bioseq-sets are described in the sections that follow.

Nucleotide/Protein Sets

The Nuc-prot set, containing a nucleotide and one or more protein products, is the
type of set most frequently produced by a Sequin data submission. The component
Bioseqs are connected by coding sequence region (CDS) features that describe how
translation from nucleotide to protein sequence is to proceed. In a traditional nucle-
otide or protein sequence database, these records might have cross-references to each
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other to indicate this relationship. The Nuc-prot set makes this explicit by packaging
them together. It also allows descriptive information that applies to all sequences
(e.g., the organism or publication citation) to be entered once (see Seg-descr: De-
scribing the Sequence, below).

Population and Phylogenetic Studies

A major class of sequence submissions represent the results of population or phy-
logenetic studies. Such research involves sequencing the same gene from a number
of individuals in the same species (population study) or in different species (phylo-
genetic study). An alignment of the individual sequences may also be submitted (see
Seq-align: Alignments, below). If the gene encodes a protein, the components of the
Population or Phylogenetic Bioseqg-set may themselves be Nuc-prot sets.

Other Bioseq-sets

A Seg set contains a segmented Bioseq and a Parts Bioseq-set, which in turn contains
the raw Bioseqs that are referenced by the segmented Bioseq. This may constitute
the nucleotide component of a Nuc-prot set.

An Equiv Bioseg-set is used in the Entrez Genomes division to hold multiple
equivalent Bioseqs. For example, human chromosomes have one or more genetic
maps, physical maps derived by different methods and a segmented Bioseq on which
“islands” of sequenced regions are placed. An alignment between the various Bios-
eqs is made based on references to any available common markers.

SEQ-ANNOT: ANNOTATING THE SEQUENCE

A Seg-annot is a self-contained package of sequence annotations or information that
refers to specific locations on specific Bioseqs. It may contain a feature table, a set
of sequence alignments, or a set of graphs of attributes along the sequence.

Multiple Seq-annots can be placed on a Bioseq or on a Bioseqg-set. Each Seq-
annot can have specific attribution. For example, PowerBLAST (Zhang and Madden,
1997) produces a Seq-annot containing sequence alignments, and each Seqg-annot is
named based on the BLAST program used (e.g., BLASTN, BLASTX, etc.). The
individual blocks of alignments are visible in the Entrez and Sequin viewers.

Because the components of a Seq-annot have specific references to locations on
Bioseqgs, the Seq-annot can stand alone or be exchanged with other scientists, and it
need not reside in a sequence record. The scope of descriptors, on the other hand,
does depend on where they are packaged. Thus, information about Bioseqs can be
created, exchanged, and compared independently of the Bioseq itself. This is an
important attribute of the Seq-annot and of the NCBI data model.

Seq-feat: Features

A sequence feature (Seq-feat) is a block of structured data explicitly attached to a
region of a Bioseq through one or two sequence locations (Seq-locs). The Seq-feat
itself can carry information common to all features. For example, there are flags to
indicate whether a feature is partial (i.e., goes beyond the end of the sequence of
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the Bioseq), whether there is a biological exception (e.g., RNA editing that explains
why a codon on the genomic sequence does not translate to the expected amino
acid), and whether the feature was experimentally determined (e.g., an mRNA was
isolated from a proposed coding region).

A feature must always have a location. This is the Seq-loc that states where on
the sequence the feature resides. A coding region’s location usually starts at the ATG
and ends at the terminator codon. The location can have more than one interval if
it is on a genomic sequence and mRNA splicing occurs. In cases of alternative
splicing, separate coding region features are created, with one multi-interval Seq-loc
for each isolated molecular species.

Optionally, a feature may have a product. For a coding region, the product Seq-
loc points to the resulting protein sequence. This is the link that allows the data
model to separately maintain the nucleotide and protein sequences, with annotation
on each sequence appropriate to that molecule. An mRNA feature on a genomic
sequence could have as its product an mRNA Bioseq whose sequence reflects the
results of posttranscriptional RNA editing. Features also have information unique to
the kind of feature. For example, the CDS feature has fields for the genetic code
and reading frame, whereas the tRNA feature has information on the amino acid
transferred.

This design completely modularizes the components required by each feature
type. If a particular feature type calls for a new field, no other field is affected. A
new feature type, even a very complex one, can be added without changing the
existing features. This means that software used to display feature locations on a
sequence need consider only the location field common to all features.

Although the DDBJ/EMBL/GenBank feature table allows numerous kinds of
features to be included (see Chapter 3), the NCBI data model treats some features
as “more equal” than others. Specifically, certain features directly model the central
dogma of molecular biology and are most likely to be used in making connections
between records and in discovering new information by computation. These features
are discussed next.

Genes. A gene is a feature in its own right. In the past, it was merely a qualifier
on other features. The Gene feature indicates the location of a gene, a heritable region
of nucleic acid sequence that confers a measurable phenotype. That phenotype may
be achieved by many components of the gene being studied, including, but not
limited to, coding regions, promoters, enhancers, and terminators. The Gene feature
is meant to approximately cover the region of nucleic acid considered by workers
in the field to be the gene. This admittedly fuzzy concept has an appealing simplicity,
and it fits in well with higher-level views of genes such as genetic maps. It has
practical utility in the era of large genomic sequencing when a biologist may wish
to see just the “xyz gene’ and not a whole chromosome. The Gene feature may also
contain cross-references to genetic databases, where more detailed information on
the gene may be found.

RNAs. An RNA feature can describe both coding intermediates (e.g., mRNAs)
and structural RNAs (e.g., tRNAs, rRNAs). The locations of an mRNA and the
corresponding coding region (CDS) completely determine the locations of 5’ and 3’
untranslated regions (UTRs), exons, and introns.
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Coding Regions. A Coding Region (CDS) feature in the NCBI data model
can be thought of as “‘instructions to translate” a nucleic acid into its protein product,
via a genetic code (Fig. 2.3). A coding region serves as a link between the nucleotide
and protein. It is important to note that several situations can provide exceptions to
the classical colinearity of gene and protein. Translational stuttering (ribosomal slip-
page), for example, merely results in the presence of overlapping intervals in the
feature’s location Seq-loc.

The genetic code is assumed to be universal unless explicitly given in the Coding
Region feature. When the genetic code is not followed at specific positions in the
sequence—for example, when alternative initiation codons are used in the first po-
sition, when suppressor tRNAs bypass a terminator, or when selenocysteine is added
—the Coding Region feature allows these anomalies to be indicated.

Proteins. A Protein feature names (or at least describes) a protein or proteolytic
product of a protein. A single protein Bioseq may have many Protein features on it.
It may have one over its full length describing a pro-peptide, the primary product of
translation. (The name in this feature is used for the /product qualifier in the
CDS feature that produces the protein.) It may have a shorter protein feature de-
scribing the mature peptide or, in the case of viral polyproteins, several mature
peptide features. Signal peptides that guide a protein through a membrane may also
be indicated.

4800 ~ P
DNA gi protein gi NH,
DNA 1787742 1787748 Amino
Sequence g:c(:uence
COOH
y \
7847 /trans|_table=11 1015

ftrans|_except=(p0s:5385..5387,aa.Sec)

Figure 2.3. The Coding Region (CDS) feature links specific regions on a nucleotide se-
quence with its encoded protein product. All features in the NCBI data model have a “lo-
cation” field, which is usually one or more intervals on a sequence. (Multiple intervals on
a CDS feature would correspond to individual exons.) Features may optionally have a “prod-
uct” field, which for a CDS feature is the entirety of the resulting protein sequence. The
CDS feature also contains a field for the genetic code. This appears in the GenBank flat
file as a /transl__table qualifier. In this example, the Bacterial genetic code (code 11) is
indicated. A CDS may also have translation exceptions indicating that a particular residue
is not what is expected, given the codon and the genetic code. In this example, residue
196 in the protein is selenocysteine, indicated by the /transl__except qualifier. NCBI
software includes functions for converting between codon locations and residue locations,
using the CDS as its guide. This capability is used to support the historical conventions of
GenBank format, allowing a signal peptide, annotated on the protein sequence, to appear
in the GenBank flat file with a location on the nucleotide sequence.
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Others. Several other features are less commonly used. A Region feature pro-
vides a simple way to name a region of a chromosome (e.g., ““major histocompati-
bility complex’) or a domain on a polypeptide. A Bond feature annotates a bond
between two residues in a protein (e.g., disulfide). A Site feature annotates a known
site (e.g., active, binding, glycosylation, methylation, phosphorylation).

Finally, numerous features exist in the table of legal features, covering many
aspects of biology. However, they are less likely than the above-mentioned features
to be used for making connections between records or for making discoveries based
on computation.

Seg-align: Alignments

Sequence alignments simply describe the relationships between biological sequences
by designating portions of sequences that correspond to each other. This correspon-
dence can reflect evolutionary conservation, structural similarity, functional similar-
ity, or a random event. An alignment can be generated algorithmically by software
(e.g., BLAST produces a Seq-annot containing one or more Seq-aligns) or directly
by a scientist (e.g., one who is submitting an aligned population study using a fa-
vorite alignment tool and a submission program like Sequin; cf. Chapter 4). The
Seq-align is designed to capture the final result of the process, not the process itself.
Aligned regions can be given scores according to the probability that the alignment
is a chance occurrence.

Regardless of how or why an alignment is generated or what its biological
significance may be, the data model records, in a condensed format, which regions
of which sequences are said to correspond. The fundamental unit of an alignment is
a segment, which is defined as an unbroken region of the alignment. In these seg-
ments, each sequence is present either without gaps or is not present at all (com-
pletely gapped). The alignment below has four segments, delineated by vertical lines:

MRLTLLC----—--- EGEEGSELPLCASCGQRIELKYKPECYPDVKNSLHV
MRLTLLCCTWREERMGEEGSELPVCASCGQRLELKYKPECFPDVKNSIHA
MRLTCLCRTWREERMGEEGSEIPVCASCGORIELKYKPE-----—-———-—

Note that mismatches do not break a segment; only a gap opening or closing event
will force the creation of a new segment.

By structuring the alignment in this fashion, it can be saved in condensed form.
The data representation records the start position in sequence coordinates for each
sequence in a segment and the length of the segment. If a sequence is gapped in a
segment, its start position is — 1. Note that this representation is independent of the
actual sequence; that is, nucleotide and protein alignments are represented the same
way, and only the score of an alignment gives a clue as to how many matches and
mismatches are present in the data.

The Sequence Is Not the Alignment

Note that the gaps in the alignment are not actually represented in the Bioseqs as
dashes. A fundamental property of the genetic code is that it is ““commaless’” (Crick
et al., 1961). That is, there is no ‘“punctuation” to distinguish one codon from the
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next or to keep translation in the right frame. The gene is a contiguous string of
nucleotides. We remind the reader that sequences themselves are also ‘‘gapless.”
Gaps are shown only in the alignment report, generated from the alignment data;
they are used only for comparison.

Classes of Alignments

Alignments can exist by themselves or in sets and can therefore represent quite
complicated relationships between sequences. A single alignment can only represent
a continuous and linear correspondence, but a set of alignments can denote a con-
tinuous, discontinuous, linear, or nonlinear relationship among sequences. Align-
ments can also be local, meaning that only portions of the sequences are included
in the alignment, or they can be global, so that the alignment completely spans all
the sequences involved.

A continuous alignment does not have regions that are unaligned; that is, for
each sequence in the alignment, each residue between the lowest-numbered and
highest-numbered residues of the alignment is also contained in the alignment. More
simply put, there are no pieces missing. Because such alignments are necessarily
linear, they can be displayed with one sequence on each line, with gaps representing
deletions or insertions. To show the differences from a “master’ sequence, one of
the sequences can be displayed with no gaps and no insertions; the remaining se-
quences can have gaps or inserted segments (often displayed above or below the rest
of the sequence), as needed. If pairwise, the alignment can be displayed in a square
matrix as a squiggly line traversing the two sequences.

A discontinuous alignment contains regions that are unaligned. For example, the
alignment below is a set of two local alignments between two protein sequences.
The regions in between are simply not aligned at all:

12 MA-TLICCTWREGRMG 26 45 KPECFPDVKNSIHV 58
15 MRLTLLCCTWREERMG 30 35 KPECFPDAKNSLHV 48

This alignment could be between two proteins that have two matching (but not
identical) structural domains linked by a divergent segment. There is simply no
alignment for the regions that are not shown above. A discontinuous alignment can
be linear, like the one in the current example, so that the sequences can still be
shown one to a line without breaking the residue order. More complicated discon-
tinuous alignments may have overlapping segments, alignments on opposite strands
(for nucleotides), or repeated segments, so that they cannot be displayed in linear
order. These nonlinear alignments are the norm and can be displayed in square
matrices (if pairwise), in lists of aligned regions, or by complex shading schemes.

Data Representations of Alignments

A continuous alignment can be represented as a single list of coordinates, as de-
scribed above. Depending on whether the alignment spans all of the sequences, it
can be designated global or local.

Discontinuous alignments must be represented as sets of alignments, each of
which is a single list of coordinates. The regions between discontinuous alignments
are not represented at all in the data, and, to display these regions, the missing pieces
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must be calculated. If the alignment as a whole is linear, the missing pieces can be
fairly simply calculated from the boundaries of the aligned regions. A discontinuous
alignment is usually local, although if it consists of several overlapping pieces it
may in fact represent a global correspondence between the sequences.

Seq-graph: Graphs

Graphs are the third kind of annotation that can go into Seq-annots. A Seq-graph
defines some continuous set of values over a defined interval on a Bioseq. It can be
used to show properties like G + C content, surface potential, hydrophobicity, or base
accuracy over the length of the sequence.

SEQ-DESCR: DESCRIBING THE SEQUENCE

A Seqg-descr is meant to describe a Bioseq (or Bioseq-set) and place it in its biological
and/or bibliographic context. Seq-descrs apply to the whole Bioseq or to the whole
of each Bioseq in the Bioseq-set to which the Seq-descr is attached.

Descriptors were introduced in the NCBI data model to reduce redundant infor-
mation in records. For example, the protein products of a nucleotide sequence should
always be from the same biological source (organism, tissue) as the nucleotide itself.
And the publication that describes the sequencing of the DNA in many cases also
discusses the translated proteins. By placement of these items as descriptors at the
Nuc-prot set level, only one copy of each item is needed to properly describe all the
sequences.

BioSource: The Biological Source

The BioSource includes information on the source organism (scientific name and
common name), its lineage in the NCBI integrated taxonomy, and its nuclear and (if
appropriate) mitochondrial genetic code. It also includes information on the location
of the sequence in the cell (e.g., nuclear genome or mitochondrion) and additional
modifiers (e.g., strain, clone, isolate, chromosomal map location).

A sequence record for a gene and its protein product will typically have a single
BioSource descriptor at the Nuc-prot set level. A population or phylogenetic study,
however, will have BioSource descriptors for each component. (The components can
be nucleotide Bioseqs or they can themselves be Nuc-prot sets.) The BioSources in
a population study will have the same organism name and usually will be distin-
guished from each other by modifier information, such as strain or clone name.

Molinfo: Molecule Information

The Mollnfo descriptor indicates the type of molecule [e.g., genomic, mRNA (usually
isolated as cDNA), rRNA, tRNA, or peptide], the technique with which it was se-
quenced (e.g., standard, EST, conceptual translation with partial peptide sequencing
for confirmation), and the completeness of the sequence [e.g., complete, missing the
left (5’ or amino) end, missing both ends]. Each nucleotide and each protein should
get its own MolInfo descriptor. Normally, then, this descriptor will not appear at-
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tached at the Nuc-prot set level. (It may go on a Seg set, since all parts of a seg-
mented Bioseq should be of the same type.)

USING THE MODEL

There are a number of consequences of using the NCBI data model for building
databases and generating reports. Some of these are discussed in the remainder of
this section.

GenBank Format

GenBank presents a “DNA-centered” view of a sequence record. (GenPept presents
the equivalent ‘“‘protein-centered” view.) To maintain compatibility with these his-
torical views, some mappings are performed between features on different sequences
or between overlapping features on the same sequence.

In GenBank format, the protein product of a coding region feature is displayed
as a /translation qualifier, not as a sequence that can have its own features.
The largest protein feature on the product Bioseq is used as the /product qualifier.
Some of the features that are actually annotated on the protein Bioseq in the NCBI
data model, such as mature peptide or signal peptide, are mapped onto the DNA
coordinate system (through the CDS intervals) in GenBank format.

The Gene feature names a region on a sequence, typically covering anything
known to affect that gene’s phenotype. Other features contained in this region will
pick up a /gene qualifier from the Gene feature. Thus, there is no need to separately
annotate the /gene qualifier on the other features.

FASTA Format

FASTA format contains a definition line and sequence characters and may be used
as input to a variety of analysis programs (see Chapter 3). The definition line starts
with a right angle bracket (>) and is usually followed by the sequence identifiers in
a parsable form, as in this example:

>gi|2352912|gb|AF012433.1|HSDDT2

The remainder of the definition line, which is usually a title for the sequence,
can be generated by software from features and other information in a Nuc-prot set.

For a segmented Bioseq, each raw Bioseq part can be presented separately, with
a dash separating the segments. (The regular BLAST search service uses this method
for producing search databases, so that the resulting ‘‘hits” will map to individual
GenBank records.) The segmented Bioseq can also be treated as a single sequence,
in which case the raw components will be catenated. (This form is used for gener-
ating the BLAST neighbors in Entrez; see Chapter 7.)

BLAST

The Basic Local Alignment Search Tool (BLAST; Altschul et al., 1990) is a popular
method of ascertaining sequence similarity. The BLAST program takes a query se-

41



42

THE NCBI DATA MODEL

quence supplied by the user and searches it against the entire database of sequences
maintained at NCBI. The output for each ‘hit” is a Seq-align, and these are com-
bined into a Seq-annot. (Details on performing BLAST searches can be found in
Chapter 8.)

The resulting Seq-annot can be used to generate the traditional BLAST printed
report, but it is much more useful when viewed with software tools such as Entrez
and Sequin. The viewer in these programs is now designed to display alignment
information in useful forms. For example, the Graphical view shows only insertions
and deletions relative to the query sequence, whereas the Alignment view fetches
the individual sequences and displays mismatches between bases or residues in
aligned regions. The Sequence view shows the alignment details at the level of
individual bases or residues. This ability to zoom in from an overview to fine details
makes it much easier to see the relationships between sequences than with a single
report.

Finally, the Seq-annot, or any of its Seq-aligns, can be passed to other tools
(such as banded or gapped alignment programs) for refinement. The results may then
be sent back into a display program.

Entrez

The Entrez sequence retrieval program (Schuler et al., 1996; cf. Chapter 7) was
designed to take advantage of connections that are captured by the NCBI data model.
For example, the publication in a sequence record may contain a MEDLINE UID
or PubMed ID. These are direct links to the PubMed article, which Entrez can
retrieve. In addition, the product Seq-loc of a Coding Region feature points to the
protein product Bioseq, which Entrez can also retrieve. The links in the data model
allow retrieval of linked records at the touch of a button. The Genomes division in
Entrez takes further advantage of the data model by providing “on the fly” display
of certain regions of large genomes, as is the case when one hits the ProtTable button
in Web Entrez.

Sequin

Sequin is a submission tool that takes raw sequence data and other biological infor-
mation and assembles a record (usually a Bioseq-set) for submission to one of the
DDBJ/EMBL/GenBank databases (Chapter 4). It makes full use of the NCBI data
model and takes advantage of redundant information to validate entries. For example,
because the user supplies both the nucleotide and protein sequences, Sequin can
determine the coding region location (one or more intervals on the nucleotide that,
through the genetic code, produce the protein product). It compares the translation
of the coding region to the supplied protein and reports any discrepancy. It also
makes sure that each Bioseq has BioSource information applied to it. This require-
ment can be satisfied for a nucleotide and its protein products by placing a single
BioSource descriptor on the Nuc-prot set.

Sequin’s viewers are all interactive, in that double-clicking on an existing item
(shown as a GenBank flatfile paragraph or a line in the graphical display of features
on a sequence) will launch an editor for that item (e.g., feature, descriptor, or se-
quence data).
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LocusLink

LocusLink is an NCBI project to link information applicable to specific genetic loci
from several disparate databases. Information maintained by LocusLink includes of-
ficial nomenclature, aliases, sequence accessions (particularly RefSeq accessions),
phenotypes, Enzyme Commission numbers, map information, and Mendelian Inher-
itance in Man numbers. Each locus is assigned a unique identification number, which
additional databases can then reference. LocusLink is described in greater detail in
Chapter 7.

CONCLUSIONS

The NCBI data model is a natural mapping of how biologists think of sequence
relationships and how they annotate these sequences. The data that results can be
saved, passed to other analysis programs, modified, and then displayed, all without
having to go through multiple format conversions. The model definition concentrates
on fundamental data elements that can be measured in a laboratory, such as the
sequence of an isolated molecule. As new biological concepts are defined and un-
derstood, the specification for data can be easily expanded without the need to change
existing data. Software tools are stable over time, and only incremental changes are
needed for a program to take advantage of new data fields. Separating the specifi-
cation into domains (e.g., citations, sequences, structures, maps) reduces the com-
plexity of the data model. Providing neighbors and links between individual records
increases the richness of the data and enhances the likelihood of making discoveries
from the databases.
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INTRODUCTION

Primary protein and nucleic acid sequence databases are so pervasive to our way of
thinking in molecular biology that few of us stop to wonder how these ubiquitous
tools are built. Understanding how the these databases are put together will allow
us to move forward in our understanding of biology and in fully harvesting the
abstracted information present in these records.

GenBank, the National Institutes of Health (NIH) genetic sequence database, is
an annotated collection of all publicly available nucleotide and protein sequences.
The records within GenBank represent, in most cases, single, contiguous stretches
of DNA or RNA with annotations. GenBank files are grouped into divisions; some
of these divisions are phylogenetically based, whereas others are based on the tech-
nical approach that was used to generate the sequence information. Presently, all
records in GenBank are generated from direct submissions to the DNA sequence
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databases from the original authors, who volunteer their records to make the data
publicly available or do so as part of the publication process. GenBank, which is
built by the National Center for Biotechnology Information (NCBI), is part of the
International Nucleotide Sequence Database Collaboration, along with its two part-
ners, the DNA Data Bank of Japan (DDBJ, Mishima, Japan) and the European Mo-
lecular Biology Laboratory (EMBL) nucleotide database from the European Bioin-
formatics Institute (EBI, Hinxton, UK). All three centers provide separate points of
data submission, yet all three centers exchange this information daily, making the
same database (albeit in slightly different format and with different information sys-
tems) available to the community at-large.

This chapter describes how the GenBank database is structured, how it fits into
the realm of the protein databases, and how its various components are interpreted
by database users. Numerous works have dealt with the topic of sequence databases
(Bairoch and Apweiller, 2000; Baker et al., 2000; Barker et al., 2000; Benson et al.,
2000; Mewes et al., 2000; Tateno et al., 1997). These publications emphasize the
great rate at which the databases have grown, and they suggest various ways of
utilizing such vast biological resources. From a practical scientific point of view, as
well as from a historical perspective, the sequence data have been separated into
protein and nucleotide databases. The nucleotides are the primary entry points to the
databases for both protein and nucleotide sequences, and there appears to be a mi-
gration toward having the nucleotide databases also involved in ‘“‘managing” the
protein data sets, as will be illustrated below. This is not a surprising development,
since submitters are encouraged to provide annotation for the coding sequence (CDS)
feature, the feature that tells how a translation product is produced. This trend toward
the comanagement of protein and nucleotide sequences is apparent from the nucle-
otide sequences available through Entrez (cf. Chapter 7) as well as with GenBank
and the formatting of records in the GenPept format. It is also apparent at EBI, where
SWISS-PROT and TREMBL are being comanaged along with EMBL nucleotide
databases. Nonetheless, the beginnings of each database set are distinct. Also implicit
in the discussion of this chapter is the underlying data model described in Chapter
2.

Historically, the protein databases preceded the nucleotide databases. In the early
1960s, Dayhoff and colleagues collected all of the protein sequences known at that
time; these sequences were catalogued as the Atlas of Protein Sequences and Struc-
tures (Dayhoff et al., 1965). This printed book laid the foundation for the resources
that the entire bioinformatics community now depends on for day-to-day work in
computational biology. A data set, which in 1965 could easily reside on a single
floppy disk (although these did not exist then), represented years of work from a
small group of people. Today, this amount of data can be generated in a fraction of
a day. The advent of the DNA sequence databases in 1982, initiated by EMBL, led
to the next phase, that of the explosion in database sequence information. Joined
shortly thereafter by GenBank (then managed by the Los Alamos National Labora-
tory), both centers were contributing to the input activity, which consisted mainly of
transcribing what was published in the printed journals to an electronic format more
appropriate for use with computers. The DNA Data Bank of Japan (DDBJ) joined
the data-collecting collaboration a few years later. In 1988, following a meeting of
these three groups (now referred to as the International Nucleotide Sequence Data-
base Collaboration), there was an agreement to use a common format for data ele-
ments within a unit record and to have each database update only the records that



FORMAT VS. CONTENT: COMPUTERS VS. HUMANS

were directly submitted to it. Now, all three centers are collecting direct submissions
and distributing them so that each center has copies of all of the sequences, meaning
that they can act as a primary distribution center for these sequences. However, each
record is owned by the database that created it and can only be updated by that
database, preventing ‘“‘update clashes” that are bound to occur when any database
can update any record.

PRIMARY AND SECONDARY DATABASES

Although this chapter is about the GenBank nucleotide database, GenBank is just
one member of a community of databases that includes three important protein data-
bases: SWISS-PROT, the Protein Information Resource (PIR), and the Protein
DataBank (PDB). PDB, the database of nucleic acid and protein structures, is de-
scribed in Chapter 5. SWISS-PROT and PIR can be considered secondary databases,
curated databases that add value to what is already present in the primary databases.
Both SWISS-PROT and PIR take the majority of their protein sequences from nu-
cleotide databases. A small proportion of SWISS-PROT sequence data is submitted
directly or enters through a journal-scanning effort, in which the sequence is (quite
literally) taken directly from the published literature. This process, for both SWISS-
PROT and PIR, has been described in detail elsewhere (Bairoch and Apweiller, 2000;
Barker et al., 2000.)

As alluded to above, there is an important distinction between primary (archival)
and secondary (curated) databases. The most important contribution that the sequence
databases make to the scientific community is making the sequences themselves
accessible. The primary databases represent experimental results (with some inter-
pretation) but are not a curated review. Curated reviews are found in the secondary
databases. GenBank nucleotide sequence records are derived from the sequencing of
a biological molecule that exists in a test tube, somewhere in a lab. They do not
represent sequences that are a consensus of a population, nor do they represent some
other computer-generated string of letters. This framework has consequences in the
interpretation of sequence analysis. In most cases, all a researcher will need is a
given sequence. Each such DNA and RNA sequence will be annotated to describe
the analysis from experimental results that indicate why that sequence was deter-
mined in the first place. One common type of annotation on a DNA sequence record
is the coding sequence (CDS). A great majority of the protein sequences have not
been experimentally determined, which may have downstream implications when
analyses are performed. For example, the assignment of a product name or function
qualifier based on a subjective interpretation of a similarity analysis can be very
useful, but it can sometimes be misleading. Therefore, the DNA, RNA, or protein
sequences are the “computable’ items to be analyzed and represent the most valuable
component of the primary databases.

FORMAT VS. CONTENT: COMPUTERS VS. HUMANS

Database records are used to hold raw sequence data as well as an array of ancillary
annotations. In a survey of the various database formats, we can observe that, al-
though different sets of rules are applied, it is still possible in many cases to inter-

47



48

THE GENBANK SEQUENCE DATABASE

change data among formats. The best format for a human to read may not be the
most efficient for a computer program. The simplicity of the flat file, which does
lend itself to simple tools that are available to all, is in great part responsible for the
popularity of the EMBL and GenBank flatfile formats. In its simplest form, a DNA
sequence record can be represented as a string of nucleotides with some tag or
identifier. Here is a nucleotide file as represented in a FASTA (or Pearson format)
file:

>L04459
GCAGCGCACGACAGCTGTGCTATCCCGGCGAGCCCGTGGCAGAGGACCTCGCTTGCGAAAGCATCGAGTACC
GCTACAGAGCCAACCCGGTGGACAAACTCGAAGTCATTGTGGACCGAATGAGGCTCAATAACGAGATTAGCG
ACCTCGAAGGCCTGCGCAAATATTTCCACTCCTTCCCGGGTGCTCCTGAGTTGAACCCGCTTAGAGACTCCG
AAATCAACGACGACTTCCACCAGTGGGCCCAGTGTGACCGCCACACTGGACCCCATACCACTTCTTTTTGTT
ATTCTTAAATATGTTGTAACGCTATGTAATTCCACCCTTCATTACTAATAATTAGCCATTCACGTGATCTCA
GCCAGTTGTGGCGCCACACTTTTTTTTCCATAAAAATCCTCGAGGAAAAGAAAAGAAAAAAATATTTCAGTT
ATTTAAAGCATAAGATGCCAGGTAGATGGAACTTGTGCCGTGCCAGATTGAATTTTGAAAGTACAATTGAGG
CCTATACACATAGACATTTGCACCTTATACATATAC

Similarly, for a protein record, the FASTA record would appear as follows:

>P31373
MTLQESDKFATKATIHAGEHVDVHGSVIEPISLSTTFKQSSPANPIGTYEYSRSQONPNRENLERAVAALENAQ
YGLAFSSGSATTATILQSLPQGSHAVSIGDVYGGTHRYFTKVANAHGVETSFTNDLLNDLPQLIKENTKLVW
IETPTNPTLKVTDIQKVADLIKKHAAGQDVILVVDNTFLSPYISNPLNFGADIVVHSATKYINGHSDVVLGV
LATNNKPLYERLQFLONAIGAIPSPFDAWLTHRGLKTLHLRVRQAALSANKIAEFLAADKENVVAVNYPGLK
THPNYDVVLKQHRDALGGGMISFRIKGGAEAASKFASSTRLFTLAESLGGIESLLEVPAVMTHGGIPKEARA
SGVFDDLVRISVGIEDTDDLLEDIKQALKQATN

The FASTA format is used in a variety of molecular biology software suites. In
its simplest incarnation (as shown above) the “‘greater than’’ character (>) designates
the beginning of a new file. An identifier (L04459 in the first of the preceding
examples) is followed by the DNA sequence in lowercase or uppercase letters, usu-
ally with 60 characters per line. Users and databases can then, if they wish, add a
certain degree of complexity to this format. For example, without breaking any of
the rules just outlined, one could add more information to the FASTA definition line,
making the simple format a little more informative, as follows:

>gi|171361|gb|L04459|YSCCYS3A Saccharomyces cerevisiae cystathionine gamma-lyase
(CYS3) gene, complete cds.
GCAGCGCACGACAGCTGTGCTATCCCGGCGAGCCCGTGGCAGAGGACCTCGCTTGCGAAAGCATCGAGTACC
GCTACAGAGCCAACCCGGTGGACAAACTCGAAGTCATTGTGGACCGAATGAGGCTCAATAACGAGATTAGCG
ACCTCGAAGGCCTGCGCAAATATTTCCACTCCTTCCCGGGTGCTCCTGAGTTGAACCCGCTTAGAGACTCCG
AAATCAACGACGACTTCCACCAGTGGGCCCAGTGTGACCGCCACACTGGACCCCATACCACTTCTTTTTGTT
ATTCTTAAATATGTTGTAACGCTATGTAATTCCACCCTTCATTACTAATAATTAGCCATTCACGTGATCTCA
GCCAGTTGTGGCGCCACACTTTTTTTTCCATAAAAATCCTCGAGGAAAAGAAAAGAAAAAAATATTTCAGTT
ATTTAAAGCATAAGATGCCAGGTAGATGGAACTTGTGCCGTGCCAGATTGAATTTTGAAAGTACAATTGAGG
CCTATACACATAGACATTTGCACCTTATACATATAC

This modified FASTA file now has the gi number (see below and Chapter 2),
the GenBank accession number, the LOCUS name, and the DEFINITION line from
the GenBank record. The record was passed from the underlying ASN.1 record (see
Appendix 3.2), which NCBI uses to actually store and maintain all its data.
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Over the years, many file formats have come and gone. Tools exist to convert
the sequence itself into the minimalist view of one format or another. NCBI’s asn2ff
(ASN.1 to flatfile) will convert an ASN.1 file into a variety of flatfiles. The asn2ff
program will generate GenBank, EMBL, GenPept, SWISS-PROT, and FASTA for-
mats and is available from the NCBI Toolkit. READSEQ is another tool that has
been widely used and incorporated into many work environments. Users should be
aware that the features from a GenBank or EMBL format may be lost when passed
through such utilities. Programs that need only the sequence (e.g., BLAST; see Chap-
ter 8) are best used with a FASTA format for the query sequence. Although less
informative than other formats, the FASTA format offers a simple way of dealing
with the primary data in a human- and computer-readable fashion.

THE DATABASE

A full release of GenBank occurs on a bimonthly schedule with incremental (and
nonincremental) daily updates available by anonymous FTP. The International Nu-
cleotide Sequence Database Collaboration also exchanges new and updated records
daily. Therefore, all sequences present in GenBank are also present in DDBJ and
EMBL, as described in the introduction to this chapter. The three databases rely on
a common data format for information described in the feature table documentation
(see below). This represents the lingua franca for nucleotide sequence database an-
notations. Together, the nucleotide sequence databases have developed defined sub-
mission procedures (see Chapter 4), a series of guidelines for the content and format
of all records.

As mentioned above, nucleotide records are often the primary source of sequence
and biological information from which protein sequences in the protein databases
are derived. There are three important consequences of not having the correct or
proper information on the nucleotide record:

 If a coding sequence is not indicated on a nucleic acid record, it will not be
represented in the protein databases. Thus, because querying the protein data-
bases is the most sensitive way of doing similarity discoveries (Chapter 8),
failure to indicate the CDS intervals on an mRNA or genomic sequence of
interest (when one should be present) may cause important discoveries to be
missed.

* The set of features usable in the nucleotide feature table that are specific to
protein sequences themselves is limited. Important information about the pro-
tein will not be entered in the records in a “‘parsable place.” (The information
may be present in a note, but it cannot reliably be found in the same place
under all circumstances.)

 If a coding feature on a nucleotide record contains incorrect information about
the protein, this could be propagated to other records in both the nucleotide
and protein databases on the basis of sequence similarity.

THE GENBANK FLATFILE: A DISSECTION

The GenBank flatfile (GBFF) is the elementary unit of information in the GenBank
database. It is one of the most commonly used formats in the representation of
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biological sequences. At the time of this writing, it is the format of exchange from
GenBank to the DDBJ and EMBL databases and vice versa. The DDBJ flatfile format
and the GBFF format are now nearly identical to the GenBank format (Appendix
3.1). Subtle differences exist in the formatting of the definition line and the use of
the gene feature. EMBL uses line-type prefixes, which indicate the type of infor-
mation present in each line of the record (Appendix 3.2). The feature section (see
below), prefixed with FT, is identical in content to the other databases. All these
formats are really reports from what is represented in a much more structured way
in the underlying ASN.1 file.

The GBFF can be separated into three parts: the header, which contains the
information (descriptors) that apply to the whole record; the features, which are the
annotations on the record; and the nucleotide sequence itself. All major nucleotide
database flat files end with // on the last line of the record.

The Header

The header is the most database-specific part of the record. The various databases
are not obliged to carry the same information in this segment, and minor variations
exist, but some effort is made to ensure that the same information is carried from
one to the other. The first line of all GBFFs is the Locus line:

LOCUS AF111785 5925 bp mMRNA PRI 01-SEP-1999

The first element on this line is the locus name. This element was historically
used to represent the locus that was the subject of the record, and submitters and
database staff spent considerable time in devising it so that it would serve as a
mnemonic. Characters after the first can be numerical or alphabetic, and all letters
are uppercase. The locusname was most useful back when most DNA sequence
records represented only one genetic locus, and it was simple to find in GenBank a
unique name that could represent the biology of the organism in a few letters and
numbers. Classic examples include HUMHBB for the human S-globin locus or SV40
for the Simian virus (one of the copies anyway; there are many now). To be usable,
the locus name needs to be unique within the database; because virtually all the
meaningful designators have been taken, the LOCUS name has passed its time as a
useful format element. Nowadays, this element must begin with a letter, and its length
cannot exceed 10 characters. Because so many software packages rely on the pres-
ence of a unique LOCUS name, the databases have been reluctant to remove it
altogether. The preferred path has been to instead put a unique word, and the simplest
way to do this has been to use an accession number of ensured uniqueness: AF111785
in the example above conforms to the locus name requirement.

The second item on the locus line is the length of the sequence. Sequences can
range from 1 to 350,000 base pairs (bp) in a single record. In practice, GenBank
and the other databases seldom accept sequences shorter than 50 bp; therefore, the
inclusion of polymerase chain reaction (PCR) primers as sequences (i.e., submissions
of 24 bp) is discouraged. The 350 kb limit is a practical one, and the various data-
bases represent longer contigs in a variety of different and inventive ways (see Chap-
ters 2 and 6 and Appendix 3.3). Records of greater than 350 kb are acceptable in
the database if the sequence represents a single gene.
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The third item on the locus line indicates the molecule type. The “mol type”
usually is DNA or RNA, and it can also indicate the strandedness (single or double,
as ss or ds, respectively); however, these attributes are rarely used these days (another
historical leftover). The acceptable mol types are DNA, RNA, tRNA, rRNA, mRNA,
and uRNA and are intended to represent the original biological molecule. For ex-
ample, a cDNA that is sequenced really represents an mRNA, and mRNA is the
indicated mol type for such a sequence. If the tRNA or rRNA has been sequenced
directly or via some cDNA intermediate, then tRNA or rRNA is shown as the mol
type. If the ribosomal RNA gene sequence was obtained via the PCR from genomic
DNA, then DNA is the mol type, even if the sequence encodes a structural RNA.

The fourth item on the locus line is the GenBank division code: three letters,
which have either taxonomic inferences or other classification purposes. Again, these
codes exist for historical reasons, recalling the time when the various GenBank
divisions were used to break up the database files into what was then a more man-
ageable size. The GenBank divisions are slightly different from those of EMBL or
DDBJ, as described elsewhere (Ouellette and Boguski, 1997). NCBI has not intro-
duced additional organism-based divisions in quite a few years, but new, function-
based divisions have been very useful because they represent functional and definable
sequence types (Ouellette and Boguski, 1997). The Expressed Sequence Tags (EST)
division was introduced in 1993 (Boguski et al., 1993) and was soon followed by a
division for Sequence Tagged Sites (STS). These, along with the Genome Survey
Sequences (GSS) and unfinished, High Throughput Genome sequences (HTG), rep-
resent functional categories that need to be dealt with by the users and the database
staff in very different ways. For example, a user can query these data sets specifically
(e.g., via a BLASTN search against the EST or HTG division). Knowing that the
hit is derived from a specific technique-oriented database allows one to interpret the
data accordingly. At this time, GenBank, EMBL, and DDBJ interpret the various
functional divisions in the same way, and all data sets are represented in the same
division from one database to the next. The CON division is a new division for
constructed (or “‘contigged’) records. This division contains segmented sets as well
as all large assemblies, which may exceed (sometimes quite substantially) the
350,000-bp limit presently imposed on single records. Such records may take the
form shown in Appendix 3.3. The record from the CON division shown in Appendix
3.3 gives the complete genomic sequence of Mycoplasma pneumoniae, which is more
than 800,000 base pairs in length. This CON record does not include sequences or
annotations; rather, it includes instructions on how to assemble pieces present in
other divisions into larger or assembled pieces. Records within the CON division
have accession and version numbers and are exchanged, like all other records within
the collaboration.

The date on the locus line is the date the record was last made public. If the
record has not been updated since being made public, the date would be the date
that it was first made public. If any of the features or annotations were updated and
the record was rereleased, then the date corresponds to the last date the entry was
released. Another date contained in the record is the date the record was submitted
(see below) to the database. It should be noted that none of these dates is legally
binding on the promulgating organization. The databases make no claim that the
dates are error-free; they are included as guides to users and should not be submitted
in any arbitration dispute. To the authors’ knowledge, they have never been used in
establishing priority and publication dates for patent application.
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DEFINITION Homo sapiens myosin heavy chain IIx/d mRNA, complete cds.

The definition line (also referred to as the ‘“def line””) is the line in the GenBank
record that attempts to summarize the biology of the record. This is the line that
appears in the FASTA files that NCBI generates and is what is seen in the summary
line for BLAST hits generated from a BLAST similarity search (Chapter 8). Much
care is taken in the generation of these lines, and, although many of them can be
generated automatically from the features in the record, they are still reviewed by
the database staff to make sure that consistency and richness of information are
maintained. Nonetheless, it is not always possible to capture all the biology in a
single line of text, and databases cope with this in a variety of ways. There are some
agreements in force between the databases, and the databases are aware of each
other’s guidelines and try to conform to them.

The generalized syntax for an mRNA definition line is as follows:

Genus species product name (gene symbol) mRNA, complete cds.
The generalized syntax for a genomic record is
Genus species product name (gene symbol) gene, complete cds.

Of course, records of many other types of data are accounted for by the guide-
lines used by the various databases. The following set of rules, however, applies to
organelle sequences, and these rules are used to ensure that the biology and source
of the DNA are clear to the user and to the database staff (assuming they are clear
to the submitter):

DEFINITION Genus species protein X (xxx) gene, complete cds;
[one choice from below], OR
DEFINITION Genus species XXS ribosomal RNA gene, complete sequence;
[one choice from below] .
nuclear gene(s) for mitochondrial product (s)
nuclear gene(s) for chloroplast product (s)
mitochondrial gene(s) for mitochondrial product (s)
chloroplast gene(s) for chloroplast product (s)

In accordance with a recent agreement among the collaborative databases, the
full genus-species names are given in the definition lines; common names (e.g.,
human) or abbreviated genus names (e.g., H. sapiens for Homo sapiens) are no longer
used. The many records in the database that precede this agreement will eventually
be updated. One organism has escaped this agreement: the human immunodeficiency
virus is to be represented in the definition line as HIV1 and HIV2.

ACCESSION AF111785

The accession number, on the third line of the record, represents the primary
key to reference a given record in the database. This is the number that is cited in
publications and is always associated with this record; that is, if the sequence is
updated (e.g., by changing a single nucleotide), the accession number will not
change. At this time, accessionmumbérs exist in one of two formats: the “1 + 57
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and “2 + 6 varieties, where 1 + 5 indicates one uppercase letter followed by five
digits and 2 + 6 is two letters plus six digits. Most of the new records now entering
the databases are of the latter variety. All GenBank records have only a single line
with the word ACCESSION on it; however, there may be more than one accession
number. The vast majority of records only have one accession number. This number
is always referred to as the primary accession number; all others are secondary. In
cases where more than one accession number is shown, the first accession number
is the primary one.

Unfortunately, secondary accession numbers have meant a variety of things over
the years, and no single definition applies. The secondary accession number may be
related to the primary one, or the primary accession number may be a replacement
for the secondary, which no longer exists. There is an ongoing effort within the
Collaboration to make the latter the default for all cases, but, because secondary
accession numbers have been used for more than 15 years (a period during which
the management of GenBank changed), all data needed to elucidate all cases are not
available.

ACCESSION AF111785
VERSION AF111785.1 GI:4808814

The version line contains the Accession.version and the gi (geninfo identifier).
These identifiers are associated with a unique nucleotide sequence. Protein sequences
also have accession numbers (protein_ids). These are also represented as Ac-
cession.version and gi numbers for unique sequences (see below). If the sequence
changes, the version number in the Accession.version will be incremented by one
and the gi will change (although not by one, but to the next available integer). The
accession number stays the same. The example above shows version 1 of the se-
quence having accession number AF111785 and gi number 4808814.

KEYWORDS

The keywords line is another historical relic that is, in many cases, unfortunately
misused. Adding keywords to an entry is often not very useful because over the years
so many authors have selected words not on a list of controlled vocabulary and not
uniformly applied to the whole database. NCBI, therefore, discourages the use of
keywords but will include them on request, especially if the words are not present
elsewhere in the record or are used in a controlled fashion (e.g., for EST, STS, GSS,
and HTG records). At this time, the resistance to adding keywords is a matter of
policy at NCBI/GenBank only.

SOURCE human.

ORGANISM Homo sapiens

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

The source line will either have the common name for the organism or its sci-
entific name. Older records may contain other source information (see below) in this
field. A concerted effort is now under way to assure that all other information present
in the source feature (as opposed to the source line) and all lines in the taxonomy
block (source and organism lines) can be derived from what is in the source feature
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and the taxonomy server at NCBI. Those interested in the lineage and other aspects
of the taxonomy are encouraged to visit the taxonomy home page at NCBI. This
taxonomy database is used by all nucleotide sequence databases, as well as SWISS-
PROT.

REFERENCE 1 (bases 1 to 5925)

AUTHORS Weiss,A., McDonough,D., Wertman,B., Acakpo-Satchivi, L.,
Montgomery, K., Kucherlapati,R., Leinwand, L. and Krauter, K.

TITLE Organization of human and mouse skeletal myosin heavy chain
gene clusters is highly conserved

JOURNAL Proc. Natl. Acad. Sci. U.S.A. 96 (6), 2958-2963 (1999)

MEDLINE 99178997

PUBMED 10077619

Each GenBank record must have at least one reference or citation. It offers
scientific credit and sets a context explaining why this particular sequence was de-
termined. In many cases, the record will have two or more reference blocks, as shown
in Appendix 3.1. The preceding sample indicates a published paper. There is a
MEDLINE and PubMed identifier present that provides a link to the MEDLINE/
PubMed databases (see Chapter 7). Other references may be annotated as unpub-
lished (which could be ‘“‘submitted) or as placeholders for a publication, as shown.

REFERENCE 1 (bases 1 to 3291)

AUTHORS Morcillo, P., Rosen, C.,Baylies, M.K. and Dorsett, D.

TITLE CHIP, a widely expressed chromosomal protein required for
remote enhancer activity and segmentation in Drosophila

JOURNAL Unpublished

REFERENCE 3 (bases 1 to 5925)

AUTHORS Weiss,A. and Leinwand,L.A.

TITLE Direct Submission

JOURNAL Submitted (09-DEC-1998) MCDB, University of Colorado at
Boulder, Campus Box 0347, Boulder, Colorado 80309-0347, USA

The last citation is present on most GenBank records and gives scientific credit
to the people responsible for the work surrounding the submitted sequence. It usually
includes the postal address of the first author or the lab where the work was done.
The date represents the date the record was submitted to the database but not the
date on which the data were first made public, which is the date on the locus line if
the record was not updated. Additional submitter blocks may be added to the record
each time the sequences are updated.

The last part of the header section in the GBFF is the comment. This section
includes a great variety of notes and comments (also called “‘descriptors’) that refer
to the whole record. Genome centers like to include their contact information in this
section as well as give acknowledgments. This section is optional and not found in
most records in GenBank. The comment section may also include E-mail addresses
or URLs, but this practice is discouraged at NCBI (although certain exceptions have
been made for genome centers as mentioned above). The simple reason is that
E-mail addresses tend to change more than the postal addresses of buildings. DDBJ
has been including E-mail addresses for some years, again representing a subtle
difference in policy. The comment section also contains information about the history
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of the sequence. If the sequence of a particular record is updated, the comment will
contain a pointer to the previous version of the record.

COMMENT On Dec 23, 1999 this sequence version replaced gi:4454562.

Alternatively, if you retrieve an earlier version of the record, this comment will point
forward to the newer version of the sequence and also backward if there was an
earlier still version

COMMENT [WARNING] On Dec 23, 1999 this sequence was replaced by
a newer version gi:6633795.

The Feature Table

The middle segment of the GBFF record, the feature table, is the most important
direct representation of the biological information in the record. One could argue
that the biology is best represented in the bibliographic reference, cited by the record.
Nonetheless, a full set of annotations within the record facilitates quick extraction
of the relevant biological features and allows the submitter to indicate why this record
was submitted to the database. What becomes relevant here is the choice of anno-
tations presented in this section. The GenBank feature table documentation describes
in great detail the legal features (i.e., the ones that are allowed) and what qualifiers
are permitted with them. This, unfortunately, has often invited an excess of invalid,
speculative, or computed annotations. If an annotation is simply computed, its use-
fulness as a comment within the record is diminished.

Described below are some of the key GenBank features, with information on
why they are important and what information can be extracted from them. The
discussion here is limited to the biological underlyings of these features and guide-
lines applied to this segment by the NCBI staff. This material will also give the
reader some insight into the NCBI data model (Chapter 2) and the important place
the GBFF occupies in the analysis of sequences, serving also to introduce the concept
of features and qualifiers in GenBank language. The features are slightly different
from other features discussed in Chapter 2. In the GBFF report format, any com-
ponent of this section designated as “‘feature.”” In the NCBI data model, “‘features”
refer to annotations that are on a part of the sequences, whereas annotations that
describe the whole sequence are called ‘““‘descriptors.”” Thus, the source feature in the
GenBank flatfile is really a descriptor in the data model view (the BioSource, which
refers to the whole sequence), not a feature as used elsewhere. Because this is a
chapter on the GenBank database, the ‘““‘feature” will refer to all components of the
feature table. The readers should be aware of this subtle difference, especially when
referring to other parts of this book.

The Source Feature. The source feature is the only feature that must be pres-
ent on all GenBank records. All features have a series of legal qualifiers, some of
which are mandatory (e.g., /organism for source). All DNA sequence records have
some origin, even if synthetic in the extreme case. In most cases, there will be a
single source feature, and it will contain the /organism. Here is what we have in
the example from Appendix 3.1:
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source 1..5925
/organism="Homo sapiens”
/db_xref="taxon:9606"
/chromosome="17"
/map="17pl3.1"
/tissue_type="skeletal muscle”

The organism qualifier contains the scientific genus and species name. In some
cases, “‘organisms’’ can be described at the subspecies level. For the source feature,
the series of qualifiers will contain all matters relating to the BioSource, and these
may include mapping, chromosome or tissue from which the molecule that was
sequenced was obtained, clone identification, and other library information. For the
source feature, as is true for all features in a GenBank record, care should be taken
to avoid adding superfluous information to the record. For the reader of these records,
anything that cannot be computationally validated should be taken with a grain of
salt. Tissue source and library origin are only as good as the controls present in the
associated publication (if any such publication exists) and only insofar as that type
of information is applied uniformly across all records in GenBank. With sets of
records in which the qualifiers are applied in a systematic way, as they are for many
large EST sets, the taxonomy can be validated (i.e., the organism does exist in the
database of all organisms that is maintained at the NCBI). If, in addition, the qualifier
is applied uniformly across all records, it is of value to the researcher. Unfortunately,
however, many qualifiers are derived without sufficient uniformity across the data-
base and hence are of less value.

Implicit in the BioSource and the organism that is assigned to it is the genetic
code used by the DNA/RNA, which will be used to translate the nucleic acid to
represent the protein sequence (if one is present in the record). This information is
shown on the CDS feature.

The CDS Feature. The CDS feature contains instructions to the reader on how
to join two sequences together or on how to make an amino acid sequence from the
indicated coordinates and the inferred genetic code. The GBFF view, being as DNA-
centric as it is, maps all features through a DNA sequence coordinate system, not
that of amino acid reference points, as in the following example from GenBank
accession X59698 (contributed by a submission to EMBL).

sig peptide 160..231

CDS 160..>2301
/codon__start=1
/product="EGF-receptor”
/protein__i1d=“CAA42219.1"
/db_xref="GI:50804"
/db_xref="MGD:MGI:95294"
/db_xref="SWISS-PROT:Q01279"
/translation="MRPSGTARTTLLVLLTALCAAGGALEEKKVCQGTSNRLTQLGTF
EDHFLSLORMYNNCEVVLGNLEITYVQRNYDLSFLKTIQEVAGYVLIALNTVERIPLE
NLQITRGNALYENTYALAILSNYGTNRTGLRELPMRNLQETLIGAVRFSNNPILCNMD
TIQWRDIVONVFMSNMSMDLQSHPSSCPKCDPSCPNGSCWGGGEENCQKLTKIICAQQ
CSHRCRGRSPSDCCHNQCAAGCTGPRESDCLVCQKFQODEATCKDTCPPLMLYNPTTYQ
MDVNPEGKYSFGATCVKKCPRNYVVTDHGSCVRACGPDYYEVEEDGIRKCKKCDGPCR
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KVCNGIGIGEFKDTLSINATNIKHFKYCTAISGDLHILPVAFKGDSFTRTPPLDPREL
EILKTVKEITGFLLIQAWPDNWTDLHAFENLET IRGRTKQHGQFSLAVVGLNITSLGL
RSLKEISDGDVIISGNRNLCYANTINWKKLEFGTPNQKTKIMNNRAEKDCKAVNHVCNP
LCSSEGCWGPEPRDCVSCQONVSRGRECVEKWNILEGEPREFVENSECIQCHPECLPQA
MNITCTGRGPDNCIQCAHYIDGPHCVKTCPAGIMGENNTLVWKYADANNVCHLCHANC
TYGCAGPGLQGCEVWPSGPKIPSIATGIVGGLLFIVVVALGIGLFMRRRHIVRKRTLR
RLLQERELVEPLTPSGEAPNQAHLRILKETEF”
mat peptide 232..>2301
/product="EGF-receptor”

This example also illustrates the use of the database cross-reference (db_xref).
This controlled qualifier allows the databases to cross-reference the sequence in ques-
tion to an external database (the first identifier) with an identifier used in that data-
base. The list of allowed db_xref databases is maintained by the International
Nucleotide Sequence Database Collaboration.

/protein_id="CAA42219.1"
/db_xref="GI:50804"

As mentioned above, NCBI assigns an accession number and a gi (geninfo)
identifier to all sequences. This means that translation products, which are sequences
in their own right (not simply attachments to a DNA record, as they are shown in a
GenBank record), also get an accession number (/protein_id) and a gi number.
These unique identifiers will change when the sequence changes. Each protein se-
quence is assigned a protein_id or protein accession number. The format of this
accession number is “3 + 5,7 or three letters and five digits. Like the nucleotide
sequence accession number, the protein accession number is represented as Acces-
sion.version. The protein gi numbers appear as a gi db_xref. When the protein
sequence in the record changes, the version of the accession number is incremented
by one and the gi is also changed.

Thus, the version number of the accession number presents the user with an
easy way to look up the previous version of the record, if one is present. Because
amino acid sequences represent one of the most important by-products of the nucle-
otide sequence database, much attention is devoted to making sure they are valid.
(If a translation is present in a GenBank record, there are valid coordinates present
that can direct the translation of nucleotide sequence.) These sequences are the start-
ing material for the protein databases and offer the most sensitive way of making
new gene discoveries (Chapter 8). Because these annotations can be validated, they
have added value, and having the correct identifiers also becomes important. The
correct product name, or protein name, can be subjective and often is assigned via
weak similarities to other poorly annotated sequences, which themselves have poor
annotations. Thus, users should be aware of potential circular amplification of paucity
of information. A good rule is that more information is usually obtained from records
describing single genes or full-length mRNA sequences with which a published paper
is associated. These records usually describe the work from a group that has studied
a gene of interest in some detail. Fortunately, quite a few records of these types are
in the database, representing a foundation of knowledge used by many.

The Gene Feature. The gene feature, which has been explicitly included in
the GenBank flatfile for only a few years, has nevertheless been implicitly in use
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since the beginning of the databases as a gene qualifier on a number of other features.
By making this a separate feature, the de facto status has been made explicit, greatly
facilitating the generation and validation of components now annotated with this
feature. The new feature has also clearly shown in its short existence that biologists
have very different definitions and uses for the gene feature in GenBank records.
Although it is obvious that not all biologists will agree on a single definition of the
gene feature, at its simplest interpretation, the gene feature represents a segment of
DNA that can be identified with a name (e.g., the MyHC gene example from Ap-
pendix 3.1) or some arbitrary number, as is often used in genome sequencing project
(e.g., T23J18.1 from GenBank accession number AC011661). The gene feature al-
lows the user to see the gene area of interest and in some cases to select it.

The RNA Features. The various structural RNA features can be used to an-
notate RNA on genomic sequences (e.g., mRNA, rRNA, tRNA). Although these are
presently not instantiated into separate records as protein sequences are, these se-
quences (especially the mRNA) are essential to our understanding of how higher
genomes are organized. RNAs deserves special mention because they represent bio-
logical entities that can be measured in the lab and thus are pieces of information
of great value for a genomic record and are often mRNA records on their own. This
is in contrast to the promoter feature, which is poorly characterized, unevenly as-
signed in a great number of records, poorly defined from a biology point of view,
and of lesser use in a GenBank record. The RNA feature on a genomic record should
represent the experimental evidence of the presence of that biological molecule.

CONCLUDING REMARKS

The DDBJ/EMBL/GenBank database is the most commonly used nucleotide and
protein sequence database. It represents a public repository of molecular biology
information. Knowing what the various fields mean and how much biology can be
obtained from these records greatly advances our understanding of this file format.
Although the database was never meant to be read from computers, an army of
computer-happy biologists have nevertheless parsed, converted, and extracted these
records by means of entire suites of programs. THE DDBJ/EMBL/GenBank flatfile
remains the format of exchange between the International Nucleotide Sequence Data-
base Collaboration members, and this is unlikely to change for years to come, despite
the availability of better, richer alternatives, such as the data described in ASN.1.
However, therein lays the usefulness of the present arrangement: it is a readily avail-
able, simple format which can represent some abstraction of the biology it wishes
to depict.

INTERNET RESOURCES FOR TOPICS PRESENTED IN CHAPTER 3

GenBank Release Notes  fitp://ncbi.nlm.nih.gov/genbank/gbrel.txt

READSEQ Sequence http://magpie.bio.indiana.edu/MolecularBiology/Molbio .
Conversion Tool archive/readseq/

Taxonomy Browser http://www.ncbi.nlm.nih.gov/Taxonomy/tax.html
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TREMBL and Swiss-Prot  http://www.ebi.ac.uk/ebi_docs/swissprot _db/
Release Notes documentation.html
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Appendix 3.1. Example of GenBank Flatfile Format

LOCUS AF111785 5925 bp mMRNA PRI 01-SEP-1999
DEFINITION Homo sapiens myosin heavy chain IIx/d mRNA, complete cds.
ACCESSION AF111785

VERSION AF111785.1 GI:4808814
KEYWORDS

SOURCE human.

ORGANISM Homo sapiens

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleos-
tomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 5925)

AUTHORS Weiss,A., McDonough,D., Wertman,B., Acakpo-Satchivi,L., Mont-
gomery, K., Kucherlapati,R., Leinwand, L. and Krauter, K.

TITLE Organization of human and mouse skeletal myosin heavy chain gene
clusters is highly conserved

JOURNAL Proc. Natl. Acad. Sci. U.S.A. 96 (6), 2958-2963 (1999)

MEDLINE 99178997

PUBMED 10077619
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REFERENCE
AUTHORS
TITLE

JOURNAL
MEDLINE
PUBMED
REFERENCE
AUTHORS
TITLE
JOURNAL

FEATURES
source

CDS

THE GENBANK SEQUENCE DATABASE

2 (bases 1 to 5925)

Weiss,A., Schiaffino,S. and Leinwand,L.A.

Comparative sequence analysis of the complete human sarcomeric
myosin heavy chain family: implications for functional diversity
J. Mol. Biol. 290 (1), 61-75 (1999)

99318869

10388558

3 (bases 1 to 5925)

Weiss,A. and Leinwand, L.A.

Direct Submission

Submitted (09-DEC-1998) MCDB, University of Colorado at Boulder,
Campus Box 0347, Boulder, Colorado 80309-0347, USA
Location/Qualifiers

1..5925

/organism="Homo sapiens”

/db_xref="taxon:9606"

/chromosome="17"

/map="17pl3.1"

/tissue_type="skeletal muscle”

1..5820

/note="MyHC”

/codon_start=1

/product="myosin heavy chain IIx/d”
/protein__id="AAD29951.1"

/db_xref="GI:4808815"
/translation="MSSDSEMAIFGEAAPFLRKSERERIEAQNKPFDAKTSVFVVDPK
ESFVKATVQSREGGKVTAKTEAGATVTVKDDQVEFPMNPPKYDKIEDMAMMTHLHEPAV
LYNLKERYAAWMIYTYSGLFCVTVNPYKWLPVYNAEVVTAYRGKKRQEAPPHIFSISD
NAYQFMLTDRENQSILITGESGAGKTVNTKRVIQYFATIAVTGEKKKEEVTSGKMQGT
LEDQITSANPLLEAFGNAKTVRNDNSSRFGKFIRIHFGTTGKLASADIETYLLEKSRV
TFQLKAERSYHIFYQIMSNKKPDLIEMLLITTNPYDYAFVSQGEITVPSIDDQEELMA
TDSAIEILGFTSDERVSIYKLTGAVMHYGNMKFKQKQREEQAEPDGTEVADKAAYLQON
LNSADLLKALCYPRVKVGNEYVTKGQTVQQVYNAVGALAKAVYDKMFLWMVTRINQQL
DTKQPRQYFIGVLDIAGFEIFDFNSLEQLCINFTNEKLQQFFNHHMFVLEQEEYKKEG
IEWTFIDFGMDLAACIELIEKPMGIFSILEEECMFPKATDTSFKNKLYEQHLGKSNNF
QKPKPAKGKPEAHFSLIHYAGTVDYNIAGWLDKNKDPLNETVVGLYQKSAMKTLALLF
VGATGAEAEAGGGKKGGKKKGSSFQTVSALFRENLNKLMTNLRSTHPHFVRCIIPNET
KTPGAMEHELVLHQLRCNGVLEGIRICRKGFPSRILYADFKQRYKVLNASATIPEGQFI
DSKKASEKLLGSIDIDHTQYKFGHTKVFFKAGLLGLLEEMRDEKLAQLITRTQAMCRG
FLARVEYQKMVERRESTIFCIQYNVRAFMNVKHWPWMKLYFKIKPLLKSAETEKEMANM
KEEFEKTKEELAKTEAKRKELEEKMVTLMQEKNDLQLQVQAEADSLADAEERCDQLIK
TKIQLEAKIKEVTERAEDEEEINAELTAKKRKLEDECSELKKDIDDLELTLAKVEKEK
HATENKVKNLTEEMAGLDETIAKLTKEKKALQEAHQQTLDDLQAEEDKVNTLTKAKIK
LEQQVDDLEGSLEQEKKIRMDLERAKRKLEGDLKLAQESAMDIENDKQQLDEKLKKKE
FEMSGLQSKIEDEQALGMQLOQKKIKELQARIEELEEEIEAERASRAKAEKQRSDLSRE
LEEISERLEEAGGATSAQIEMNKKREAEFQKMRRDLEEATLQHEATAATLRKKHADSV
AELGEQIDNLQRVKQKLEKEKSEMKMEIDDLASNMETVSKAKGNLEKMCRALEDQLSE
IKTKEEEQQRLINDLTAQRARLQTESGEYSRQLDEKDTLVSQLSRGKQAFTQQIEELK
ROLEEETKAKSALAHALQSSRHDCDLLREQYEEEQEAKAELQRAMSKANSEVAQWRTK
YETDAIQRTEELEEAKKKLAQRLOQDAEEHVEAVNAKCASLEKTKQRLONEVEDLMIDV
ERTNAACAALDKKQRNFDKILAEWKQKCEETHAELEASQKESRSLSTELFKIKNAYEE
SLDQLETLKRENKNLQQEISDLTEQIAEGGKRIHELEKIKKQVEQEKSELQAALEEAE
ASLEHEEGKILRIQLELNQVKSEVDRKIAEKDEEIDQMKRNHIRIVESMQSTLDAEIR
SRNDATRLKKKMEGDLNEMETIQLNHANRMAAEALRNYRNTQAILKDTQLHLDDALRSQ
EDLKEQLAMVERRANLLQAEIEELRATLEQTERSRKIAEQELLDASERVQLLHTQONTS
LINTKKKLETDISQIQGEMEDIIQEARNAEEKAKKAITDAAMMAEELKKEQDTSAHLE
RMKKNLEQTVKDLQHRLDEAEQLALKGGKKQIQKLEARVRELEGEVESEQKRNVEAVK
GLRKHERKVKELTYQTEEDRKNILRLQODLVDKLQAKVKSYKRQAEEAEEQSNVNLSKF
RRIQHELEEAEERADIAESQVNKLRVKSREVHTKIISEE”
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BASE COUNT 1890 a 1300 ¢ 1613 g 1122 t
ORIGIN
1 atgagttctg actctgagat ggccattttt ggggaggctg ctcctttect cecgaaagtet
61 gaaagggagc gaattgaagc ccagaacaag ccttttgatg ccaagacatc agtctttgtg
121 gtggacccta aggagtcctt tgtgaaagca acagtgcaga gcagggaagg ggggaaggty
<< Sequence deleted to save space >>
5701 cggaggatcc agcacgagct ggaggaggcc gaggaaaggg ctgacattge tgagtcccag
5761 gtcaacaagc tgagggtgaa gagcagggag gttcacacaa aaatcataag tgaagagtaa
5821 tttatctaac tgctgaaagg tgaccaaaga aatgcacaaa atgtgaaaat ctttgtcact
5881 ccattttgta cttatgactt ttggagataa aaaatttatc tgcca
//

Appendix 3.2. Example of EMBL Flatfile Format

ID AF111785 standard; RNA; HUM; 5925 BP.

XX

AC AF111785;

XX

SV AF111785.1

XX

DT 13-MAY-1999 (Rel. 59, Created)

DT 07-SEP-1999 (Rel. 61, Last updated, Version 3)
XX

DE Homo sapiens myosin heavy chain IIx/d mRNA, complete cds.
XX

Kw .

XX

0OS Homo sapiens (human)

OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia;

OC Eutheria; Primates; Catarrhini; Hominidae; Homo.

XX

RN [1]

RP 1-5925

RX MEDLINE; 99178997.

RA Weiss A., McDonough D., Wertman B., Acakpo-Satchivi L., Montgomery K.,
RA Kucherlapati R., Leinwand L., Krauter K. ;

RT “Organization of human and mouse skeletal myosin heavy chain gene clusters
RT is highly conserved”;

RL Proc. Natl. Acad. Sci. U.S.A. 96(6) :2958-2963(1999) .

XX

RN [2]

RP 1-5925

RX MEDLINE; 99318869.

RA Weiss A., Schiaffino S., Leinwand L.A.;

RT “Comparative sequence analysis of the complete human sarcomeric myosin
RT heavy chain family: implications for functional diversity”;

RL J. Mol. Biol. 290(1):61-75(1999).

XX

RN [3]

RP 1-5925

RA Weiss A., Leinwand L.A.;

RT ;

RL Submitted (09-DEC-1998) to the EMBL/GenBank/DDBJ databases.

RL MCDB, University of Colorado at Boulder, Campus Box 0347, Boulder, Colorado
RL 80309-0347, USA
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XX

DR SPTREMBL; Q9Y622; Q9Y622.

XX

FH Key Location/Qualifiers

FH

FT source 1..5925

FT /chromosome="17"

FT /db_xref="taxon:9606"

FT /organism=“Homo sapiens”

FT /map="17pl3.1"

FT /tissue_type="skeletal muscle”

FT CDS 1..5820

FT /codon_start=1

FT /db_xref="SPTREMBL:Q9Y622"

FT /note="MyHC”’

FT /product="myosin heavy chain IIx/d”

FT /protein__id=“AAD29951.1"

T /translation="MSSDSEMAIFGEAAPFLRKSERERIEAQNKPFDAKTSVFVVDPKE
FT SFVKATVQSREGGKVTAKTEAGATVTVKDDQVFPMNPPKYDKIEDMAMMTHLHEPAVLY
FT NLKERYAAWMIYTYSGLFCVTVNPYKWLPVYNAEVVTAYRGKKRQEAPPHIFSISDNAY
FT QFMLTDRENQSTILITGESGAGKTVNTKRVIQYFATIAVTGEKKKEEVTSGKMQGTLEDQ
FT IISANPLLEAFGNAKTVRNDNSSRFGKFIRIHFGTTGKLASADIETYLLEKSRVTFQLK
FT AERSYHIFYQIMSNKKPDLIEMLLITTNPYDYAFVSQGEITVPSIDDQEELMATDSAIE
FT TILGFTSDERVSIYKLTGAVMHYGNMKFKQKQREEQAEPDGTEVADKAAYLONLNSADLL
FT KALCYPRVKVGNEYVTKGQTVQQVYNAVGALAKAVYDKMFLWMVTRINQQLDTKQPRQY
FT FIGVLDIAGFEIFDFNSLEQLCINFTNEKLQQFFNHHMFVLEQEEYKKEGIEWTFIDFG
FT MDLAACIELIEKPMGIFSILEEECMFPKATDTSFKNKLYEQHLGKSNNFQKPKPAKGKP
FT EAHFSLTIHYAGTVDYNIAGWLDKNKDPLNETVVGLYQKSAMKTLALLFVGATGAEAEAG
T GGKKGGKKKGSSFQTVSALFRENLNKLMTNLRSTHPHFVRCIIPNETKTPGAMEHELVL
T HQLRCNGVLEGIRICRKGFPSRILYADFKQRYKVLNASAIPEGQFIDSKKASEKLLGSI
T DIDHTQYKFGHTKVFFKAGLLGLLEEMRDEKLAQLITRTQAMCRGFLARVEYQKMVERR
FT ESIFCIQYNVRAFMNVKHWPWMKLYFKIKPLLKSAETEKEMANMKEEFEKTKEELAKTE
FT AKRKELEEKMVTLMQEKNDLQLQVQAEADSLADAEERCDQLIKTKIQLEAKIKEVTERA
FT EDEEEINAELTAKKRKLEDECSELKKDIDDLELTLAKVEKEKHATENKVKNLTEEMAGL
FT DETIAKLTKEKKALQEAHQQTLDDLQAEEDKVNTLTKAKIKLEQQVDDLEGSLEQEKKTI
FT RMDLERAKRKLEGDLKLAQESAMDIENDKQQLDEKLKKKEFEMSGLQSKIEDEQALGMQ
T LQKKIKELQARIEELEEEIEAERASRAKAEKQRSDLSRELEEISERLEEAGGATSAQIE
FT MNKKREAEFQKMRRDLEEATLQHEATAATLRKKHADSVAELGEQIDNLQRVKQKLEKEK
FT SEMKMEIDDLASNMETVSKAKGNLEKMCRALEDQLSEIKTKEEEQQRLINDLTAQRARL
FT QTESGEYSRQLDEKDTLVSQLSRGKQAFTQQIEELKRQLEEEIKAKSALAHALQSSRHD
FT CDLLREQYEEEQEAKAELQRAMSKANSEVAQWRTKYETDAIQRTEELEEAKKKLAQRLQ
FT DAEEHVEAVNAKCASLEKTKQRLONEVEDLMIDVERTNAACAALDKKQRNFDKILAEWK
T QKCEETHAELEASQKESRSLSTELFKIKNAYEESLDQLETLKRENKNLQQEISDLTEQT
FT AEGGKRIHELEKIKKQVEQEKSELQAALEEAEASLEHEEGKILRIQLELNQVKSEVDRK
FT TAEKDEEIDQMKRNHIRIVESMQSTLDAEIRSRNDAIRLKKKMEGDLNEMEIQLNHANR
T MAAEALRNYRNTQATILKDTQLHLDDALRSQEDLKEQLAMVERRANLLQAETIEELRATLE
FT QTERSRKIAEQELLDASERVQLLHTONTSLINTKKKLETDISQIQGEMEDIIQEARNAE
FT EKAKKAITDAAMMAEELKKEQDTSAHLERMKKNLEQTVKDLQHRLDEAEQLALKGGKKQ
T IQKLEARVRELEGEVESEQKRNVEAVKGLRKHERKVKELTYQTEEDRKNILRLQDLVDK
FT LQAKVKSYKRQAEEAEEQSNVNLSKFRRIQHELEEAEERADIAESQVNKLRVKSREVHT
FT KIISEE”

XX

SQ Sequence 5925 BP; 1890 A; 1300 C; 1613 G; 1122 T; 0 other;
atgagttctg actctgagat ggccattttt ggggaggctyg ctcectttect ccgaaagtet 60
gaaagggagc gaattgaagc ccagaacaag ccttttgatg ccaagacatc agtctttgtg 120
<< Sequence deleted to save space >>
cggaggatcc agcacgagct ggaggaggcc gaggaaaggg ctgacattge tgagtcccag 5760
gtcaacaagc tgagggtgaa gagcagggag gttcacacaa aaatcataag tgaagagtaa 5820
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tttatctaac tgctgaaagg tgaccaaaga aatgcacaaa atgtgaaaat ctttgtcact 5880
ccattttgta cttatgactt ttggagataa aaaatttatc tgcca 5925
//

Appendix 3.3. Example of a Record in CON Division

LOCUS U00089 816394 bp DNA circular CON 10-MAY-1999
DEFINITION Mycoplasma pneumoniae M129 complete genome.

ACCESSION U00089

VERSION U00089.1 GI:6626256

KEYWORDS

SOURCE Mycoplasma pneumoniae.

ORGANISM Mycoplasma pneumoniae

Bacteria; Firmicutes; Bacillus/Clostridium group; Mollicutes;
Mycoplasmataceae; Mycoplasma.

REFERENCE 1 (bases 1 to 816394)

AUTHORS Himmelreich,R., Hilbert,H., Plagens,H., Pirkl,E., Li,B.C. and
Herrmann,R.

TITLE Complete sequence analysis of the genome of the bacterium Mycoplasma
pneumoniae

JOURNAL Nucleic Acids Res. 24 (22), 4420-4449 (1996)

MEDLINE 97105885

REFERENCE 2 (bases 1 to 816394)

AUTHORS Himmelreich,R., Hilbert,H. and Li,B.-C.

TITLE Direct Submission

JOURNAL Submitted (15-NOV-1996) Zentrun fuer Molekulare Biologie Heidelberg,
University Heidelberg, 69120 Heidelberg, Germany

FEATURES Location/Qualifiers

source 1..816394

/organism="Mycoplasma pneumoniae”
/strain="M129"
/db_xref="taxon:2104"
/note="ATCC 29342"

CONTIG join (AE000001.1:1..9255,AE000002.1:59..16876,AE000003.1:59..10078,
AE000004.1:59..17393,AE000005.1:59..10859,AE000006.1:59..11441,
AE000007.1:59..10275,AE000008.1:59..9752,AE000009.1:59..14075,

AE000010.1:59..11203,AE000011.1:59..15501,AE000012.1:59..10228,
AE000013.1:59..10328,AE000014.1:59..12581,AE000015.1:59..17518,
AE000016.1:59..16518,AE000017.1:59..18813,AE000018.1:59..11147,
AE000019.1:59..10270,AE000020.1:59..16613,AE000021.1:59..10701,
AE000022.1:59..12807,AE000023.1:59..13289,AE000024.1:59..9989,

AE000025.1:59..10770,AE000026.1:59..11104,AE000027.1:59..33190,
AE000028.1:59..10560,AE000029.1:59..10640,AE000030.1:59..11802,
AE000031.1:59..11081,AE000032.1:59..12622,AE000033.1:59..12491,
AE000034.1:59..11844,AE000035.1:59..10167,AE000036.1:59..11865,
AE000037.1:59..11391,AE000038.1:59..11399,AE000039.1:59..14233,
AE000040.1:59..13130,AE000041.1:59..11259,AE000042.1:59..12490,
AE000043.1:59..11643,AE000044.1:59..15473,AE000045.1:59..10855,
AE000046.1:59..11562,AE000047.1:59..20217,AE000048.1:59..10109,
AE000049.1:59..12787,AE000050.1:59..12516,AE000051.1:59..16249,
AE000052.1:59..12390,AE000053.1:59..10305,AE000054.1:59..10348,
AE000055.1:59..9893,AE000056.1:59..16213,AE000057.1:59..11119,

AE000058.1:59..28530,AE000059.1:59..12377,AE000060.1:59..11670,
AE000061.1:59..24316,AE000062.1:59..10077,AE000063.1:59..1793)

//
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INTRODUCTION

DNA sequence records from the public databases (DDBJ/EMBL/GenBank) are es-
sential components of computational analysis in molecular biology. The sequence
records are also reagents for improved curated resources like LocusLink (see Chapter
7) or many of the protein databases. Accurate and informative biological annotation
of sequence records is critical in determining the function of a disease gene by
sequence similarity search. The names or functions of the encoded protein products,
the name of the genetic locus, and the link to the original publication of that sequence
make a sequence record of immediate value to the scientist who retrieves it as the
result of a BLAST or Entrez search. Effective interpretation of recently finished
human genome sequence data is only possible by making use of all submitted data
provided along with the actual sequence. These complete, annotated records capture
the biology associated with DNA sequences.
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SUBMITTING DNA SEQUENCES TO THE DATABASES

Journals no longer print full sequence data, but instead print a database accession
number, and require authors to submit sequences to a public database when an article
describing a new sequence is submitted for publication. Many scientists release their
sequences before the article detailing them is in press. This practice is now the rule
for large genome centers, and, although some individual laboratories still wait for
acceptance of publication before making their data available, others consider the
release of a record to be publication in its own right.

The submission process is governed by an international, collaborative agreement.
Sequences submitted to any one of the three databases participating in this collab-
oration will appear in the other two databases within a few days of their release to
the public. Sequence records are then distributed worldwide by various user groups
and centers, including those that reformat the records for use within their own suites
of programs and databases. Thus, by submitting a sequence to only one of the three
“major” databases, researchers can quickly disseminate their sequence data and
avoid the possibility that redundant records will be archived.

As mentioned often in this book, the growth of sequence databases has been
exponential. Most sequence records in the early years were submitted by individual
scientists studying a gene of interest. A program suitable for this type of submission
should allow for the manual annotation of arbitrary biological information. However,
the databases recently have had to adapt not only to new classes of data but also to
a substantially higher rate of submission. A significant fraction of submissions now
represents phylogenetic and population studies, in which relationships between se-
quences need to be explicitly demonstrated. Completed genomes are also becoming
available at a growing rate.

This chapter is devoted to the submission of DNA and protein sequences and
their annotations into the public databases. Presented here are two different ap-
proaches for submitting sequences to the databases, one Web-based (using BanklIt)
and the other using Sequin, a multi-platform program that can use a direct network
connection. Sequin is also an ASN.1 editing tool that takes full advantage of the
NCBI data model (see Chapter 2) and has become a platform for many sequence
analysis tools that NCBI has developed over the years. (A separate bulk-submission
protocol used for EST records, which are submitted to the databases at the rate of
thousands per day, is discussed briefly at the end of this chapter. Fortunately, EST
records are fairly simple and uniform in content, making them amenable to automatic
processing.)

WHY, WHERE, AND WHAT TO SUBMIT?

One should submit to whichever of the three public databases is most convenient.
This may be the database that is closest geographically, it may be the repository one
has always used in the past, or it may simply be the place one’s submission is likely
to receive the best attention. All three databases have knowledgeable staff able to
help submitters throughout the process. Under normal circumstances, an accession
number will be returned within one workday, and a finished record should be avail-
able within 5—10 working days, depending on the information provided by the sub-
mitter. Submitting data to the database is not the end of one’s scientific obligation.
Updating the record as more information becomes available will ensure that the
information within the record will survive time and scientific rigor.



WHY, WHERE, AND WHAT TO SUBMIT?

Presently, it is assumed that all submissions of sequences are done electronically:
via the World Wide Web, by electronic mail, or (at the very least) on a computer
disk sent via regular postal mail. The URLs and E-mail addresses for electronic
submissions are shown in the list at the end of the chapter.

All three databases want the same end result: a richly annotated, biologically
and computationally sound record, one that allows other scientists to be able to reap
the benefits of the work already performed by the submitting biologist and that
affords links to the protein, bibliographic, and genomic databases (see Chapter 7).
There is a rich set of biological features and other annotations available, but the
important components are the ones that lend themselves to analysis. These include
the nucleotide and protein sequences, the CDS (coding sequence, also known as
coding region), gene, and mRNA features (i.e., features representing the central
dogma of molecular biology), the organism from which the sequences were deter-
mined, and the bibliographic citation that links them to the information sphere and
will have all the experimental details that give this sequence its raison d’étre.

DNA/RNA

The submission process is quite simple, but care must be taken to provide infor-
mation that is accurate (free of errors and vector or mitochondrial contamination)
and as biologically sound as possible, to ensure maximal usability by the scientific
community. Here are a few matters to consider before starting a submission, regard-
less of its form.

Nature of the Sequence. Is it of genomic or mRNA origin? Users of the
databases like to know the nature of the physical DNA that is the origin of the
molecule being sequenced. For example, although cDNA sequencing is performed
on DNA (and not RNA), the type of the molecule present in the cell is mRNA. The
same is true for the genomic sequencing of rRNA genes, in which the sequenced
molecule is almost always genomic DNA. Copying the rRNA into DNA, like direct
sequencing of rRNA, although possible, is rarely done. Bear in mind also that, be-
cause the sequence being submitted should be of a unique molecular type, it must
not represent (for example) a mixture of genomic and mRNA molecule types that
cannot actually be isolated from a living cell.

Is the Sequence Synthetic, But Not Artificial? There is a special division
in the nucleotide databases for synthetic molecules, sequences put together experi-
mentally that do not occur naturally in the environment (e.g., protein expression
vector sequences). The DNA sequence databases do not accept computer-generated
sequences, such as consensus sequences, and all sequences in the databases are
experimentally derived from the actual sequencing of the molecule in question. They
can, however, be the compilation of a shotgun sequencing exercise.

How Accurate is the Sequence? This question is poorly documented in the
database literature, but the assumption that the submitted sequence is as accurate as
possible usually means at least two-pass coverage (in opposite orientations) on the
whole submitted sequence. Equally important is the verification of the final submitted
sequence. It should be free of vector contamination (this can be verified with a
BLASTN search against the VecScreen database; see Chapter 8 and later in this
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chapter) and possibly checked with known restriction maps, to eliminate the possi-
bility of sequence rearrangement and to confirm correct sequence assembly.

Organism

All DNA sequence records must show the organism from which the sequence was
derived. Many inferences are made from the phylogenetic position of the records
present in the databases. If these are wrongly placed, an incorrect genetic code may
be used for translation, with the possible consequence of an incorrectly translated or
prematurely truncated protein product sequence. Just knowing the genus and species
is usually enough to permit the database staff to identify the organism and its lineage.
NCBI offers an important taxonomy service, and the staff taxonomists maintain the
taxonomy that is used by all the nucleotide databases and by SWISS-PROT, a curated
protein database.

Citation

As good as the annotations can be, they will never surpass a published article in
fully representing the state of biological knowledge with respect to the sequence in
any given record. It is therefore imperative to ensure the proper link between the
research publication and the primary data it will cite. For this reason, having a
citation in the submission being prepared is of great importance, even if it consists
of just a temporary list of authors and a working title. Updating these citations at
publication time is also important to the value of the record. (This is done routinely
by the database staff and will happen more promptly if the submitter notifies the
staff on publication of the article.)

Coding Sequence(s)

A submission of nucleotide also means the inclusion of the protein sequences it
encodes. This is important for two reasons:

* Protein databases (e.g., SWISS-PROT and PIR) are almost entirely populated
by protein sequences present in DNA sequence database records.

» The inclusion of the protein sequence serves as an important, if not essential,
validation step in the submission process.

Proteins include the enzyme molecules that carry out many of the biological
reactions we study, and their sequences are an intrinsic part of the submission pro-
cess. Their importance, which is discussed in Chapter 2, is also reflected in the
submission process, and this information must be captured for representation in the
various databases. Also important are the protein product and gene names, if these
are known. There are a variety of resources (many present in the lists that conclude
these chapters) that offer the correct gene nomenclature for many organisms (cf.
Genetic nomenclature guide, Trends in Genetics, 1998).

The coding sequence features, or CDS, are the links between the DNA or RNA
and the protein sequences, and their correct positioning is central in the validation,
as is the correct genetic code. The nucleotide databases now use 17 different genetic
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codes that are maintained by the taxonomy and molecular biology staff at NCBI.
Because protein sequences are so important, comprising one of the main pieces of
molecular biology information on which biologists can compute, they receive much
deserved attention from the staff at the various databases. It is usually simple to find
the correct open-reading frame in an mRNA (see Chapter 10), and various tools are
available for this (e.g., NCBI’s ORF Finder). Getting the correct CDS intervals in a
genomic sequence from a higher eukaryote is a little trickier: the different exon-
coding sequences must be joined, and this involves a variety of approaches, also
described in Chapter 10. (The Suggest Intervals function in Sequin will calculate
CDS intervals if given the sequence of the protein and the proper genetic code.) A
submitted record will be validated by the database staff but even more immediately
by the submission tool used as well. Validation checks that the start and stop codons
are included in the CDS intervals, that these intervals are using exon/intron-consen-
sus boundaries, and that the provided amino acid sequence can be translated from
the designated CDS intervals using the appropriate genetic code.

Other Features

There are a variety of other features available for the feature sections of a submitted
sequence record. The complete set of these is represented in the feature table doc-
umentation. Although many features are available, there is much inconsistent usage
in the databases, mainly due to a lack of consistent guidelines and poor agreement
among biologists as to what they really mean. Getting the organism, bibliography,
gene, CDS, and mRNA correct usually suffices and makes for a record that can be
validated, is informative, and allows a biologist to grasp in a few lines of text an
overview of the biology of the sequence. Nonetheless, the full renditions of the
feature table documentation are available for use as appropriate but with care taken
as to the intent of the annotations.

POPULATION, PHYLOGENETIC, AND MUTATION STUDIES

The nucleotide databases are now accepting population, phylogenetic, and mutational
studies as submitted sequence sets, and, although this information is not adequately
represented in the flatfile records, it is appearing in the various databases. This allows
the submission of a group of related sequences together, with entry of shared infor-
mation required only once. Sequin also allows the user to include the alignment
generated with a favorite alignment tool and to submit this information with the
DNA sequence. New ways to display this information (such as Entrez) should soon
make this kind of data more visible to the general scientific community.

PROTEIN-ONLY SUBMISSIONS

In most cases, protein sequences come with a DNA sequence. There are some ex-
ceptions—people do sequence proteins directly—and such sequences must be sub-
mitted without a corresponding DNA sequence. SWISS-PROT presently is the best
venue for these submissions.

69



70

SUBMITTING DNA SEQUENCES TO THE DATABASES

HOW TO SUBMIT ON THE WORLD WIDE WEB

The World Wide Web is now the most common interface used to submit sequences
to the three databases. The Web-based submission systems include Sakura (‘“‘cherry
blossoms’”) at DDBJ, Webln at EBI, and Banklt at the NCBI. The Web is the pre-
ferred submission path for simple submissions or for those that do not require com-
plicated annotations or too much repetition (i.e., 30 similar sequences, as typically
found in a population study, would best be done with Sequin, see below). The Web
form is ideal for a research group that makes few sequence submissions and needs
something simple, entailing a short learning curve. The Web forms are more than
adequate for the majority of the submissions: some 75—-80% of individual submis-
sions to NCBI are done via the Web. The alternative addresses (or URLSs) for sub-
mitting to the three databases are presented in the list at the end of the chapter.

On entering a Banklt submission, the user is asked about the length of the
nucleotide sequence to be submitted. The next Banklt form is straightforward: it asks
about the contact person (the individual to whom the database staff may address any
questions), the citations (who gets the scientific credit), the organism (the top 100
organisms are on the form; all others must be typed in), the location (nuclear vs.
organelle), some map information, and the nucleotide sequence itself. At the end of
the form, there is a Banklt button, which calls up the next form. At this point, some
validation is made, and, if any necessary fields were not filled in, the form is pre-
sented again. If all is well, the next form asks how many features are to be added
and prompts the user to indicate their types. If no features were added, BankIt will
issue a warning and ask for confirmation that not even one CDS is to be added to
the submission. The user can say no (zero new CDSs) or take the opportunity to add
one or more CDS. At this point, structural RNA information or any other legal DDBJ/
EMBL/GenBank features can be added as well.

To begin to save a record, press the Banklt button again. The view that now
appears must be approved before the submission is completed; that is, more changes
may be made, or other features may be added. To finish, press BankIt one more
time. The final screen will then appear; after the user toggles the Update/Finished
set of buttons and hits BanklIt one last time, the submission will go to NCBI for
processing. A copy of the just-finished submission should arrive promptly via E-mail;
if not, one should contact the database to confirm receipt of the submission and to
make any correction that may be necessary.

HOW TO SUBMIT WITH SEQUIN

Sequin is designed for preparing new sequence records and updating existing records
for submission to DDBJ, EMBL, and GenBank. It is a tool that works on most
computer platforms and is suitable for a wide range of sequence lengths and com-
plexities, including traditional (gene-sized) nucleotide sequences, segmented entries
(e.g., genomic sequences of a spliced gene for which not all intronic sequences have
been determined), long (genome-sized) sequences with many annotated features, and
sets of related sequences (i.e., population, phylogenetic, or mutation studies of a
particular gene, region, or viral genome). Many of these submissions could be per-
formed via the Web, but Sequin is more practical for more complex cases. Certain
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types of submission (e.g., segmented sets) cannot be made via the Web unless explicit
instructions to the database staff are inserted.

Sequin also accepts sequences of proteins encoded by the submitted nucleotide
sequences and allows annotation of features on these proteins (e.g., signal peptides,
transmembrane regions, or cysteine disulfide bonds). For sets of related or similar
sequences (e.g., population or phylogenetic studies), Sequin accepts information from
the submitter on how the multiple sequences are aligned to each other. Finally, Sequin
can be used to edit and resubmit a record that already exists in GenBank, either by
extending (or replacing) the sequence or by annotating additional features or
alignments.

Submission Made Easy

Sequin has a number of attributes that greatly simplify the process of building and
annotating a record. The most profound aspect is automatic calculation of the inter-
vals on a CDS feature given only the nucleotide sequence, the sequence of the protein
product, and the genetic code (which is itself automatically obtained from the or-
ganism name). This “Suggest Intervals’ process takes consensus splice sites into
account in its calculations. Traditionally, these intervals were entered manually, a
time-consuming and error-prone process, especially on a genomic sequence with
many exons, in cases of alternative splicing, or on segmented sequences.

Another important attribute is the ability to enter relevant annotation in a simple
format in the definition line of the sequence data file. Sequin recognizes and extracts
this information when reading the sequences and then puts it in the proper places in
the record. For nucleotide sequences, it is possible to enter the organism’s scientific
name, the strain or clone name, and several other source modifiers. For example

>eIF4E [organism=Drosophila melanogaster] [strain=0Oregon R]
CGGTTGCTTGGGTTTTATAACATCAGTCAGTGACAGGCATTTCCAGAGTTGCCCTGTTCAACAATCGATA
GCTGCCTTTGGCCACCAAAATCCCAAACTTAATTAAAGAATTAAATAATTCGAATAATAATTAAGCCCAG

This is especially important for population and phylogenetic studies, where the
source modifiers are necessary to distinguish one component from another.
For protein sequences, the gene and protein names can be entered. For example

>4E-I [gene=eIF4E] [protein=eukaryotic initiation factor 4E-I]
MQSDFHRMKNFANPKSMFKTSAPSTEQGRPEPPTSAAAPAEAKDVKPKEDPQETGEPAGNTATTTAPAGD
DAVRTEHLYKHPLMNVWTLWYLENDRSKSWEDMONEITSFDTVEDFWSLYNHIKPPSEIKLGSDYSLFKK

If this information is not present in the sequence definition line, Sequin will prompt
the user for it before proceeding. Annotations on the definition line can be very
convenient, since the information stays with the sequence and cannot be forgotten
or mixed-up later. In addition to building the proper CDS feature, Sequin will au-
tomatically make gene and protein features with this information.

Because the majority of submissions contain a single nucleotide sequence and
one or more coding region features (and their associated protein sequences), the
functionality just outlined can frequently result in a finished record, ready to submit
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without any further annotation. With gene and protein names properly recorded, the
record becomes informative to other scientists who may retrieve it as a BLAST
similarity result or from an Entrez search.

Starting a New Submission

Sequin begins with a window that allows the user to start a new submission or load
a file containing a saved record. After the initial submission has been built, the record
can be saved to a file and edited later, before finally being sent to the database. If
Sequin has been configured to be network aware, this window also allows the down-
loading of existing database records that are to be updated.

A new submission is made by filling out several forms. The forms use folder
tabs to subdivide a window into several pages, allowing all the requested data to be
entered without the need for a huge computer screen. These entry forms have buttons
for Prev(ious) Page and Next Page. When the user arrives at the last page on a form,
the Next Page button changes to Next Form.

The Submitting Authors form requests a tentative title, information on the contact
person, the authors of the sequence, and their institutional affiliations. This form is
common to all submissions, and the contact, authors, and affiliation page data can
be saved by means of the Export menu item. The resulting file can be read in when
starting other submissions by choosing the Import menu item. However, because
even population, phylogenetic, or mutation studies are submitted in one step as one
record, there is less need to save the submitter information.

The Sequence Format form asks for the type of submission (single sequence,
segmented sequence, or population, phylogenetic, or mutation study). For the last
three types of submission, which involve comparative studies on related sequences,
the format in which the data will be entered also can be indicated. The default is
FASTA format (or raw sequence), but various contiguous and interleaved formats
(e.g., PHYLIP, NEXUS, PAUP, and FASTA+ GAP) are also supported. These latter
formats contain alignment information, and this is stored in the sequence record.

The Organism and Sequences form asks for the biological data. On the Organism
page, as the user starts to type the scientific name, the list of frequently used organ-
isms scrolls automatically. (Sequin holds information on the top 800 organisms pres-
ent in GenBank.) Thus, after typing a few letters, the user can fill in the rest of the
organism name by clicking on the appropriate item in the list. Sequin now knows
the scientific name, common name, GenBank division, taxonomic lineage, and, most
importantly, the genetic code to use. (For mitochondrial genes, there is a control to
indicate that the alternative genetic code should be used.) For organisms not on the
list, it may be necessary to set the genetic code control manually. Sequin uses the
standard code as the default. The remainder of the Organism and Sequences form
differs depending on the type of submission.

Entering a Single Nucleotide Sequence and its Protein Products

For a single sequence or a segmented sequence, the rest of the Organism and Se-
quences form contains Nucleotide and Protein folder tabs. The Nucleotide page has
controls for setting the molecule type (e.g., genomic DNA or mRNA) and topology
(usually linear, occasionally circular) and for indicating whether the sequence is
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incomplete at the 5’ or 3’ ends. Similarly, the Protein page has controls for creating
an initial mRNA feature and for indicating whether the sequence is incomplete at
the amino or carboxyl ends.

For each protein sequence, Suggest Intervals is run against the nucleotide se-
quence (using the entered genetic code, which is usually deduced from the chosen
organism), and a CDS feature is made with the resulting intervals. A Gene feature
is generated, with a single interval spanning the CDS intervals. A protein product
sequence is made, with a Protein feature to give it a name. The organism and pub-
lication are placed so as to apply to all nucleotide and protein sequences within the
record. Appropriate molecule-type information is also placed on the sequences. In
most cases, it is much easier to enter the protein sequence and let Sequin construct
the record automatically than to manually add a CDS feature (and associated gene
and protein features) later.

Entering an Aligned Set of Sequences

A growing class of submissions involves sets of related sequences: population, phy-
logenetic, or mutation studies. A large number of HIV sequences come in as popu-
lation studies. A common phylogenetic study involves ribulose-1,5-bisphosphate car-
boxylase (RUBISCO), a major enzyme of photosynthesis and perhaps the most
prevalent protein (by weight) on earth. Submitting such a set of sequences is not
much more complex than submitting a single sequence. The same submission infor-
mation form is used to enter author and contact information.

In the Sequence Format form, the user chooses the desired type of submis-
sion. Population studies are generally from different individuals in the same (cross-
breeding) species. Phylogenetic studies are from different species. In the former case,
it is best to embed in the definition lines strain, clone, isolate, or other source-
identifying information. In the latter case, the organism’s scientific name should be
embedded. Multiple sequence studies can be submitted in FASTA format, in which
case Sequin should later be called on to calculate an alignment. Better yet, alignment
information can be indicated by encoding the data in one of several popular align-
ment formats.

The Organism and Sequences form is slightly different for sets of sequences.
The Organism page for phylogenetic studies allows the setting of a default genetic
code only for organisms not in Sequin’s local list of popular species. The Nucleotide
page has the same controls as for a single sequence submission. Instead of a Protein
page, there is now an Annotation page. Many submissions are of rRNA sequence or
no more than a complete CDS. (This means that the feature intervals span the full
range of each sequence.) The Annotation page allows these to be created and named.
A definition line (title) can be specified, and Sequin can prefix the individual organ-
ism name to the title. More complex situations, in which sequences have more than
a single interval feature across the entire span, can be annotated by feature propa-
gation after the initial record has been built and one of the sequences has been
annotated.

As a final step, Sequin displays an editor that allows all organism and source
modifiers on each sequence to be edited (or entered if the definition lines were not
annotated). On confirmation of the modifiers, Sequin finishes assembling the record
into the proper structure.
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Viewing the Sequence Record

Sequin provides a number of different views of a sequence record. The traditional
flatfile can be presented in FASTA, GenBank (Fig. 4.1), or EMBL format. (These
can be exported to files on the user’s computer, which can then be entered into other
sequence analysis packages.) A graphical view (Fig. 4.2) shows feature intervals on
a sequence. This is particularly useful for viewing alternatively spliced coding
regions. (The style of the Graphical view can be customized, and these views can
also be copied to the personal computer’s clipboard for pasting into a word processor
or drawing program that will be used in preparing a manuscript for publication.)
There is a more detailed view that shows the features on the actual sequence. For
records containing alignments (e.g., alignments between related sequences entered
by a user, or the results of a BLAST search), one can request either a graphical
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Figure 4.1. Viewing a sequence record with Sequin. The sequence record viewer uses
GenBank format, by default. In this example, a CDS feature has been clicked, as indicated
by the bar next to its paragraph. Double-clicking on a paragraph will launch an editor for
the feature, descriptor, or sequence that was selected. The viewer can be duplicated, and
multiple viewers can show the same record in different formats.
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Figure 4.2. Sequin’s graphical format can show segmented sequence construction and
feature intervals. These can be compared with drawings in laboratory notebooks to see,
at a glance, whether the features are annotated at the proper locations. Different styles
can be used, and new styles can be created, to customize the appearance of the graphical
view. The picture can be copied to a personal computer’s clipboard for pasting into a word
processor or drawing program.

overview showing insertions, deletions, and mismatches or a detailed view showing
the alignment of sequence letters.

The above-mentioned viewers are interactive. Clicking on a feature, a sequence,
or the graphical representation of an alignment between sequences will highlight that
object. Double-clicking will launch the appropriate editor. Multiple viewers can be
used on the same record, permitting different formats to be seen simultaneously. For
example, it is quite convenient to have the graphical view and the GenBank (or
EMBL) flatfile view present at the same time, especially on larger records containing
more than one CDS. The graphical view can be compared to a scientist’s lab note-
book drawings, providing a quick reality check on the overall accuracy of the feature
annotation.

Validation

To ensure the quality of data being submitted, Sequin has a built-in validator that
searches for missing organism information, incorrect coding region lengths (com-
pared to the submitted protein sequence), internal stop codons in coding regions,
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mismatched amino acids, and nonconsensus splice sites. Double-clicking on an item
in the error report launches an editor on the “offending” feature.

The validator also checks for inconsistent use of ““partial’’ indications, especially
among coding regions, the protein product, and the protein feature on the product.
For example, if the coding region is marked as incomplete at the 5’ end, the protein
product and protein feature should be marked as incomplete at the amino end. (Un-
less told otherwise, the CDS editor will automatically synchronize these separate
partial indicators, facilitating the correction of this kind of inconsistency.)

Advanced Annotation and Editing Functions

The sequence editor built into Sequin automatically adjusts feature intervals as the
sequence is edited. This is particularly important if one is extending an existing
record by adding new 5’ sequence. Prior to Sequin, this process entailed manually
correcting the intervals on all biological features on the sequence or, more likely,
redoing the entire submission from scratch. The sequence editor is used much like
a text editor, with new sequence being pasted in or typed in at the position of a
Cursor.

For population or phylogenetic studies, Sequin allows annotation of one se-
quence, whereupon features from that sequence can be propagated to all other se-
quences through the supplied alignment. (In the case of a CDS feature, the feature
intervals can be calculated automatically by reading in the sequence of its protein
product rather than having to enter them by typing.) Feature propagation is accessed
from the alignment editor. The result is the same as would have been achieved if
features had been manually annotated on each sequence, but with feature propagation
the entire process can be completed in minutes rather than hours.

The concepts behind feature propagation and the sequence editor combine to
provide a simple and automatic method for updating an existing sequence. The Up-
date Sequence functions allow the user to enter an overlapping sequence or a re-
placement sequence. Sequin makes an alignment, merges the sequences if necessary,
propagates features onto the new sequence in their new positions, and uses these to
replace the old sequence and features.

Genome centers frequently store feature coordinates in databases. Sequin can
now annotate features by reading a simple tab-delimited file that specifies the location
and type of each feature. The first line starts with >Features, a space, and the
sequence identifier of the sequence. The table is composed of five columns: start,
stop, feature key, qualifier key, and qualifier value. The columns are separated by
tab characters. The first row for any given feature has start, stop, and feature key.
Additional feature intervals just have start and stop. The qualifiers follow on lines
starting with three tabs. An example of this format follows below.

>Features lcl|eIF4E

80 2881 gene
gene eIF4E
1402 1458 CDS
1550 1920
1986 2085
2317 2404

2466 2629
product eukaryotic initiation factor 4E-I
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Sending the Submission

A finished submission can be saved to disk and E-mailed to one of the databases. It
is also a good practice to save frequently throughout the Sequin session, to make
sure nothing is inadvertently lost. The list at the end of this chapter provides E-mail
addresses and contact information for the three databases.

UPDATES

The database staffs at all three databases welcome all suggestions on making the
update process as efficient and painless as possible. People who notice that records
are published but not yet released are strongly encouraged to notify the databases as
well. If errors are detected, these should also be forwarded to the updates addresses;
the owner of the record is notified accordingly (by the database staff), and a correc-
tion usually results. This chain of events is to be distinguished from third-party
annotations, which are presently not accepted by the databases. The record belongs
to the submitter(s); the database staff offers some curatorial, formatting guideline
suggestions, but substantive changes come only from a listed submitter. Many sci-
entists simply E-mail a newly extended sequence or feature update to the databases
for updating.

CONSEQUENCES OF THE DATA MODEL

Sequin is, in reality, an ASN.1 editor. The NCBI data model, written in the ASN.1
data description language, is designed to keep associated information together in
descriptors or features (see Chapter 2). Features are typically biological entities (e.g.,
genes, coding regions, RNAs, proteins) that always have a location (of one or more
intervals) on a sequence. Descriptors were introduced to carry information that can
apply to multiple sequences, eliminating the need to enter multiple copies of the
same information.

For the simplest case, that of a single nucleotide sequence with one or more
protein products, Sequin generally allows the user to work without needing to be
aware of the data model’s structural hierarchy. Navigation is necessary, as is at least
a cursory understanding of the data model, if extensive annotation on protein product
sequences is contemplated or for manual annotation of population and phylogenetic
sets. Setting the Target control to a given sequence changes the viewer to show a
graphical view or text report on that sequence. Any features or descriptors created
with the Annotation submenus will be packaged on the currently targeted sequence.

Although Sequin does provide full navigation among all sequences within a
structured record, building the original structure from the raw sequence data is a job
best left to Sequin’s ‘“‘create new submission” functions described above. Sequin
asks up front for information (e.g., organism and source modifiers, gene and protein
names) and knows how to correctly package everything into the appropriate place.
This was, in fact, one of the main design goals of Sequin. Manual annotation requires
a more detailed understanding of the data model and expertise with the more esoteric
functions of Sequin.
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Using Sequin as a Workbench

Sequin also provides a number of sequence analysis functions. For example, one
function will reverse-complement the sequence and the intervals of its features. New
functions can easily be added. These functions appear in a window called the NCBI
Desktop (Fig. 4.3), which directly displays the internal structure of the records cur-
rently loaded in memory. This window can be understood as a Venn diagram, with
descriptors on a set (such as a population study) applying to all sequences in that
set. The Desktop allows drag-and-drop of items within a record. For example, the
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Figure 4.3. The NCBI Desktop displays a graphical overview of how the record is structured
in memory, based on the NCBI data model (see Chapter 2). This view is most useful to a
software developer or database sequence annotator. In this example, the submission con-
tains a single Nuc-prot set, which in turn contains a nucleotide and two proteins. Each
sequence has features associated with it. BioSource and publication descriptors on the Nuc-
prot set apply the same organism (Drosophila melanogaster) and the same publication,
respectively, to all sequences.
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user can read the results of a BLAST analysis and then drag-and-drop this infor-
mation onto a sequence record, thus adding the alignment data to the record, or a
newly calculated feature can be dragged into the record. (A separate Seq-loc on the
Desktop can be dragged onto a feature, in which case it changes the feature location.)
The modifications are immediately displayed on any active viewers. Note, however,
that not all annotations are visible in all viewers. The flatfile view does have its
limitations; for example, it does not display alignments and does not even indicate
that alignments are present. Understanding the Desktop is not necessary for the casual
user submitting a simple sequence; however, for the advanced user, it can immedi-
ately take the mystery out of the data.

EST/STS/GSS/HTG/SNP AND GENOME CENTERS

Genome centers have now established a number of relationships with DNA sequence
databases and have streamlined the submission process for a great number of record
types. Not all genome centers deal with all sequence types, but all databases do. The
databases have educated their more sophisticated users on this, and, conversely, some
of the genomes centers have also encouraged certain database managers to learn their
own data model as well (e.g., the use of AceDB to submit sequences at Stanford,
Washington University at St. Louis, and the Sanger Centre or the use of XML at
Celera).

CONCLUDING REMARKS

The act of depositing records into a database and seeing these records made public
has always been an exercise of pride on the part of submitters, a segment of the
scientific activity from their laboratory that they present to the scientific community.
It is also a mandatory step that has been imposed by publishers as part of the
publication process. In this process, submitters always hope to provide information
in the most complete and useful fashion, allowing maximum use of their data by the
scientific community.

Very few users are aware of the complete array of intricacies present in the
databases, but they do know the biology they want these entries to represent. It is
incumbent on the databases to provide tools that will facilitate this process. The
database staff also provides expertise through their indexing staff (some databases
also call them curators or annotators), who have extensive training in biology and
are very familiar with the databases; they ensure that nothing is lost in the submission
process. The submission exercise itself has not always been easy and was not even
encouraged at the beginning of the sequencing era, simply because databases did not
know how to handle this information. Now, however, the databases strongly en-
courage the submission of sequence data and of all appropriate updates. Many tools
are available to facilitate this task, and together the databases support Sequin as
the tool to use for new submissions, in addition to their respective Web submis-
sions tools. Submitting data to the databases has now become a manageable (and
sometimes enjoyable) task, with scientists no longer having good excuses for ne-
glecting it.
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CONTACT POINTS FOR SUBMISSION OF SEQUENCE DATA TO

DDBJ/EMBL/GenBank
DDBJ (Center for Information Biology, NIG)
Address DDBJ, 1111 Yata, Mishima, Shiznoka 411, Japan
Fax 81-559-81-6849
E-mail
Submissions ddbjsub@ddbj.nig.ac.jp
Updates ddbjupdt@ddbj.nig.ac.jp

Information ddbj@ddbj.nig.ac.jp

World Wide Web
Home page http://www.ddbj.nig.ac.jp/
Submissions http://sakura.ddbj.nig.ac.jp/

EMBL (European Bioinformatics Institutes, EMBL Outstation)

Address EMBL Outstation, EBI, Wellcome Trust Genome Campus,
Hinxton Cambridge, CB10 1SD, United Kingdom
Voice 01.22.349.44.44
Fax 01.22.349.44.68
E-mail
Submissions datasubs @ebi.ac.uk
Updates update @ebi.ac.uk
Information datalib@ebi.ac.uk
World Wide Web
Home page http://'www.ebi.ac.uk/
Submissions http://'www.ebi.ac.uk/subs/allsubs.html
‘Webln http://www.ebi.ac.uk/submission/webin. html

GenBank (National Center for Biotechnology Information, NIH)
Address GenBank, National Center for Biotechnology Information,
National Library of Medicine, National Institutes of
Health, Building 38 A, Room 8N805, Bethesda MD 20894

Telephone 301-496-2475

Fax 301-480-9241

E-mail
Submissions gb-sub@ncbi.nlm.nih.gov
EST/GSS/STS  batch-sub@ncbi.nlm.nih.gov
Updates update @ncbi.nlm.nih.gov
Information info@ncbi.nlm.nih.gov

World Wide Web
Home page http://'www.ncbi.nlm.nih.gov/
Submissions http://www.ncbi.nlm.nih.gov/Web/GenBank/submit. html
BankIt http://www.ncbi.nlm.nih.gov/Banklt/

INTERNET RESOURCES FOR TOPICS PRESENTED IN CHAPTER 4

dbEST hitp://www.ncbi.nlm.nih.gov/dbEST/
dbSTS http://www.ncbi.nlm.nih.gov/dbSTS/
dbGSS http://www.ncbi.nlm.nih.gov/dbGSS/
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INTRODUCTION TO STRUCTURES

This chapter introduces biomolecular structures from a bioinformatics perspective,
with special emphasis on the sequences that are contained in three-dimensional struc-
tures. The major goal of this chapter is to inform the reader about the contents of
structure database records and how they are treated, and sometimes mistreated, by
popular software programs. This chapter does not cover the computational processes
used by structural scientists to obtain three-dimensional structures, nor does it discuss
the finer points of comparative protein architecture. Several excellent monographs
regarding protein architecture and protein structure determination methods are al-
ready widely available and often found in campus bookstores (e.g., Branden and
Tooze, 1999).

The imagery of protein and nucleic acid structures has become a common feature
of biochemistry textbooks and research articles. This imagery can be beautiful and
intriguing enough to blind us to the experimental details an image represents—the
underlying biophysical methods and the effort of hard-working X-ray crystallogra-
phers and nuclear magnetic resonance (NMR) spectroscopists. The data stored in
structure database records represents a practical summary of the experimental data.
It is, however, not the data gathered directly by instruments, nor is it a simple
mathematical transformation of that data. Each structure database record carries as-
sumptions and biases that change as the state of the art in structure determination
advances. Nevertheless, each biomolecular structure is a hard-won piece of crucial
information and provides potentially critical information regarding the function of
any given protein sequence.
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Since the first edition of this book was released, the software for viewing and
manipulating three-dimensional structures has improved dramatically. Another major
change has come in the form of an organizational transition, with the Protein Data
Bank (PDB) moving from the Brookhaven National Laboratories to the Research
Collaboratory for Structural Biology. The result has been a complete change in the
organization of the PDB web site. The impact of these changes for biologists will
be discussed herein.

The Notion of Three-Dimensional Molecular Structure Data

Let us begin with a mental exercise in recording the three-dimensional data of a
biopolymer. Consider how we might record, on paper, all the details and dimensions
of a three-dimensional ball-and-stick model of a protein like myoglobin. One way
to begin is with the sequence, which can be obtained by tracing out the backbone
of the three-dimensional model. Beginning from the NH,-terminus, we identify each
amino acid side chain by comparing the atomic structure of each residue with the
chemical structure of the 20 common amino acids, possibly guided by an illustration
of amino acid structures from a textbook.

Once the sequence has been written down, we proceed with making a two-
dimensional sketch of the biopolymer with all its atoms, element symbols, and bonds,
possibly taking up several pieces of paper. The same must be done for the heme
ligand, which is an important functional part of the myoglobin molecule. After draw-
ing its chemical structure on paper, we might record the three-dimensional data by
measuring the distance of each atom in the model starting from some origin point,
along some orthogonal axis system. This would provide the x-, y-, and z-axis dis-
tances to each atomic “‘ball” in the ball-and-stick structure.

The next step is to come up with a bookkeeping scheme to keep all the (x, y,
z) coordinate information connected to the identity of each atom. The easiest ap-
proach may be to write the (x, y, z) value as a coordinate triple on the same pieces
of paper used for the two-dimensional sketch of the biopolymer, right next to each
atom. This associates the (x, y, z) value with the atom it is attached to.

This mental exercise helps to conceptualize what a three-dimensional structure
database record ought to contain. There are two things that have been recorded here:
the chemical structure and the locations of the individual atoms in space. This is an
adequate ‘“‘human-readable” record of the structure, but one probably would not
expect a computer to digest it easily. The computer needs clear encoding of the
associations of atoms, bonds, coordinates, residues, and molecules, so that one may
construct software that can read the data in an unambiguous manner. Here is where
the real exercise in structural bioinformatics begins.

Coordinates, Sequences, and Chemical Graphs

The most obvious data in a typical three-dimensional structure record, regardless of
the file format in use, is the coordinate data, the locations in space of the atoms of
a molecule. These data are represented by (x, y, z) triples, distances along each axis
to some arbitrary origin in space. The coordinate data for each atom is attached to
a list of labeling information in the structure record: which element, residue, and
molecule each point in space belongs to. For the standard biopolymers (DNA, RNA,
and proteins), this labeling information can be derived starting with the raw sequence.
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Implicit in each sequence is considerable chemical data. We can infer the complete
chemical connectivity of the biopolymer molecule directly from a sequence, includ-
ing all its atoms and bonds, and we could make a sketch, just like the one described
earlier, from sequence information alone. We refer to this ““sketch’ of the molecule
as the chemical graph component of a three-dimensional structure. Every time a
sequence is presented in this book or elsewhere, remember that it can encode a fairly
complete description of the chemistry of that molecule.

When we sketch all the underlying atoms and bonds representing a sequence,
we may defer to a textbook showing the chemical structures of each residue, lest we
forget a methyl group or two. Likewise, computers could build up a sketch like a
representation of the chemical graph of a structure in memory using a residue
dictionary, which contains a table of the atom types and bond information for each
of the common amino acid and nucleic acid building blocks. What sequence is unable
to encode is information about posttranslational modifications. For example, in the
structure databases, a phosphorylated tyrosine residue is indicated as “X”’ in the one
letter code—essentially an unknown! Any residue that has had an alteration to its
standard chemical graph will, unfortunately, be indicated as X in the one-letter en-
coding of sequence.

Atoms, Bonds, and Completeness

Molecular graphics visualization software performs an elaborate ‘‘connect-the-dots”
process to make the wonderful pictures of protein structure we see in textbooks of
biomolecular structure, like the structure for insulin (3INS; Isaccs and Agarwa, 1978)
shown in Figure 5.1. The connections used are, of course, the chemical bonds be-
tween all the atoms. In current use, three-dimensional molecular structure database
records employ two different ‘“minimalist” approaches regarding the storage of bond
data.

The original approach to recording atoms and bonds is something we shall call
the chemistry rules approach. The rules are the observable physical rules of chem-
istry, such as, “‘the average length of a stable C—C bond is about 1.5 angstroms.”
Applying these rules to derive the bonds means that any two coordinate locations in
space that are 1.5 A apart and are tagged as carbon atoms always form a single
bond. With the chemistry rules approach, we can simply disregard the bonds. A
perfect and complete structure can be recorded without any bond information, pro-
vided it does not break any of the rules of chemistry in atomic locations. Obviously,
this is not always the case, and specific examples of this will be presented later in
this chapter.

The chemistry rules approach ended up being the basis for the original three-
dimensional biomolecular structure file format, the PDB format from the Protein
Data Bank at Brookhaven (Bernstein et al., 1977). These records, in general, lack
complete bond information for biopolymers. The working assumption is that no
residue dictionary is required for interpretation of data encoded by this approach,
just a table of bond lengths and bond types for every conceivable pair of bonded
atoms is required.

Every software package that reads in PDB data files must reconstruct the bonds
based on these rules. However, the rules we are describing have never been explicitly
codified for programmers. This means that interpreting the bonding in PDB files is
left for the programmer to decide, and, as a result, software can be inconsistent in
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Figure 5.1. The insulin structure 3INS illustrated using Cn3D with OpenGL. Four chains are
depicted in the crystallographic unit. This structure illustrates two of many bioinformatics

bridges that must be spanned between sequence and structure databases, the lack of en-
coding of the active biological unit, and the lack of encoding of the relationship of the
observed structure to the parent gene. (See color plate.)

the way it draws bonds, especially when different algorithms and distance tolerances
are used. The PDB file approach is minimalist in terms of the data stored in a record,
and deciphering it often requires much more sophisticated logic than would be
needed if the bonding information and chemical graph were explicitly specified in
the record. Rarely is this logic properly implemented, and it may in fact be impos-
sible to deal with all the exceptions in the PDB file format. Each exception to the
bonding rules needs to be captured by complicated logic statements programmed on
a case-by-case basis.

The second approach to describing a molecule is what we call the explicit bond-
ing approach, the method that is used in the database records of the Molecular
Modeling Database (MMDB), which is, in turn, derived from the data in PDB. In
the MMDB system, the data file contains all of its own explicit bonding information.
MMDB uses a standard residue dictionary, a record of all the atoms and bonds in
the polymer forms of amino acid and nucleic acid residues, plus end-terminal vari-
ants. Such data dictionaries are common in the specialized software used by scientists
to solve X-ray or NMR structures. The software that reads in MMDB data can use
the bonding information supplied in the dictionary to connect atoms together, without
trying to enforce (or force) the rules of chemistry. As a result, the three-dimensional
coordinate data are consistently interpreted by visualization software, regardless of
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type. This approach also lends itself to inherently simpler software, because excep-
tions to bonding rules are recorded within the database file itself and read in without
the need for another layer of exception-handling codes.

Scientists that are unfamiliar with structure data often expect all structures in
the public databases to be of “textbook’ quality. They are often surprised when parts
of a structure are missing. The availability of a three-dimensional database record
for a particular molecule does not ever imply its completeness. Structural complete-
ness is strictly defined as follows: At least one coordinate value for each and every
atom in the chemical graph is present.

Structural completeness is quite rare in structure database records. Most X-ray
structures lack coordinates for hydrogen atoms because the locations of hydrogens
in space are not resolved by the experimental methods currently available. However,
some modeling software can be used to predict the locations of these hydrogen atoms
and reconstruct a structure record with the now-modeled hydrogens added. It is easy
to identify the products of molecular modeling in structure databases. These often
have overly complete coordinate data, usually with all possible hydrogen atoms pres-
ent that could not have been found using an experimental method.

PDB: PROTEIN DATA BANK AT THE RESEARCH COLLABORATORY
FOR STRUCTURAL BIOINFORMATICS (RCSB)

Overview

The use of computers in biology has its origins in biophysical methods, such as X-
ray crystallography. Thus, it is not surprising that the first ““bioinformatics’ database
was built to store complex three-dimensional data. The Protein Data Bank, originally
developed and housed at the Brookhaven National Laboratories, is now managed
and maintained by the Research Collaboratory for Structural Bioinformatics (RCSB).
RCSB is a collaborative effort involving scientists at the San Diego Supercomputing
Center, Rutgers University, and the National Institute of Standards and Technology.
The collection contains all publicly available three-dimensional structures of proteins,
nucleic acids, carbohydrates, and a variety of other complexes experimentally deter-
mined by X-ray crystallographers and NMR spectroscopists. This section focuses
briefly on the database and bioinformatics services offered through RCSB.

RCSB Database Services

The World Wide Web site of the Protein Data Bank at the RCSB offers a number
of services for submitting and retrieving three-dimensional structure data. The home
page of the RCSB site provides links to services for depositing three-dimensional
structures, information on how to obtain the status of structures undergoing process-
ing for submission, ways to download the PDB database, and links to other relevant
sites and software.

PDB Query and Reporting

Starting at the RCSB home page, one can retrieve three-dimensional structures using
two different query engines. The SearchLite system is the one most often used,
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providing text searching across the database. The SearchFields interface provides the
additional ability to search specific fields within the database. Both of these systems
report structure matches to the query in the form of Structure Summary pages, an
example of which is shown in Figure 5.2. The RCSB Structure Summary page links
are to other Web pages that themselves provide a large number of links, and it may
be confusing to a newcomer to not only sift through all this information but to decide
which information sources are the most relevant ones for biological discovery.

Submitting Structures. For those who wish to submit three-dimensional
structure information to PDB, the RCSB offers its ADIT service over the Web. This
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Figure 5.2. Structure query from RCSB with the structure 1BNR (Bycroft et al., 1991). The
Structure Explorer can link the user to a variety of other pages with information about this
structure including sequence, visualization tools, structure similarity (neighbors), and struc-
ture quality information, which are listed on subsequent Web pages.
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service provides a data format check and can create automatic validation reports that
provide diagnostics as to the quality of the structure, including bond distances and
angles, torsion angles, nucleic acid comparisons, and crystal packing. Nucleic acid
structures are accepted for deposition at NDB, the Nucleic Acids Database.

It has been the apparent working policy of PDB to reject three-dimensional
structures that result from computational three-dimensional modeling procedures
rather than from an actual physical experiment; submitting data to the PDB from a
nonexperimental computational modeling exercise is strongly discouraged.

PDB-ID Codes. The structure record accessioning scheme of the Protein Data
Bank is a unique four-character alphanumeric code, called a PDB-ID or PDB code.
This scheme uses the digits 0 to 9 and the uppercase letters A to Z. This allows for
over 1.3 million possible combinations and entries. Many older records have mne-
monic names that make the structures easier to remember, such as 3INS, the record
for insulin shown earlier. A different method is now being used to assign PDB-IDs,
with the use of mnemonics apparently being abandoned.

Database Searching, PDB File Retrieval, mmCIF File Retrieval, and
Links. PDB’s search engine, the Structure Explorer, can be used to retrieve PDB
records, as shown in Figure 5.2. The Structure Explorer is also the primary database
of links to third-party annotation of PDB structure data. There are a number of links
maintained in the Structure Explorer to Internet-based three-dimensional structure
services on other Web sites. Figure 5.2 shows the Structure Summary for the protein
barnase (IBNR; Bycroft et al., 1991). The Structure Explorer also provides links to
special project databases maintained by researchers interested in related topics, such
as structural evolution (FSSP; Holm and Sander, 1993), structure-structure similarity
(DALI; Holm and Sander, 1996), and protein motions (Gerstein et al., 1994). Links
to visualization tool-ready versions of the structure are provided, as well as authored
two-dimensional images that can be very helpful to see how to orient a three-di-
mensional structure for best viewing of certain features such as binding sites.

Sequences from Structure Records

PDB file-encoded sequences are notoriously troublesome for programmers to work
with. Because completeness of a structure is not always guaranteed, PDB records
contain two copies of the sequence information: an explicit sequence and an implicit
sequence. Both are required to reconstruct the chemical graph of a biopolymer.
Explicit sequences in a PDB file are provided in lines starting with the keyword
SEQRES. Unlike other sequence databases, PDB records use the three-letter amino
acid code, and nonstandard amino acids are found in many PDB record sequence
entries with arbitrarily chosen three-letter names. Unfortunately, PDB records seem
to lack sensible, consistent rules. In the past, some double-helical nucleic acid se-
quence entries in PDB were specified in a 3’-to-5' order in an entry above the
complementary strand, given in 5’-to-3" order. Although the sequences may be ob-
vious to a user as a representation of a double helix, the 3'-to-5" explicit sequences
are nonsense to a computer. Fortunately, the NDB project has fixed many of these
types of problems, but the PDB data format is still open to ambiguity disasters from
the standpoint of computer readability. As an aside, the most troubling glitch is the
inability to encode element type separately from the atom name. Examples of where
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this becomes problematic include cases where atoms in structures having FAD or
NAD cofactors are notorious for being interpreted as the wrong elements, such as
neptunium (NP to Np), actinium (AC to Ac), and other nonsense elements.

Because three-dimensional structures can have multiple biopolymer chains, to
specify a discrete sequence, the user must provide the PDB chain identifier. SEQRES
entries in PDB files have a chain identifier, a single uppercase letter or blank space,
identifying each individual biopolymer chain in an entry. For the structure 3INS
shown in Figure 5.1, there are two insulin molecules in the record. The 3INS record
contains sequences labeled A, B, C, and D. Knowledge of the biochemistry of insulin
is required to understand that protein chains A and B are in fact derived from the
same gene and that a posttranslational modification cuts the proinsulin sequence into
the A and B chains observed in the PDB record. This information is not recorded in
a three-dimensional structure record, nor in the sequence record for that matter. A
place for such critical biological information is now being made within the BIND
database (Bader and Hogue, 2000). The one-letter chain-naming scheme has diffi-
culties with the enumeration of large oligomeric three-dimensional structures, such
as viral capsids, as one quickly runs out of single-letter chain identifiers.

The implicit sequences in PDB records are contained in the embedded stereo-
chemistry of the (x, y, z) data and names of each ATOM record in the PDB file. The
implicit sequences are useful in resolving explicit sequence ambiguities such as the
backward encoding of nucleic acid sequences or in verifying nonstandard amino
acids. In practice, many PDB file viewers (such as RasMol) reconstruct the chemical
graph of a protein in a PDB record using only the implicit sequence, ignoring the
explicit SEQRES information. If this software then is asked to print the sequence of
certain incomplete molecules, it will produce a nonphysiological and biologically
irrelevant sequence. The implicit sequence, therefore, is not sufficient to reconstruct
the complete chemical graph.

Consider an example in which the sequence ELVISISALIVES is represented
in the SEQRES entry of a hypothetical PDB file, but the coordinate information is
missing all (x, y, z) locations for the subsequence ISA. Software that reads the
implicit sequence will often report the PDB sequence incorrectly from the chemical
graph as ELVISLIVES. A test structure to determine whether software looks only
at the implicit sequence is 3TS1 (Brick et al., 1989) as shown in the Java three-
dimensional structure viewer WebMol in Figure 5.3. Here, both the implicit and
explicit sequences in the PDB file to the last residue with coordinates are correctly
displayed.

Validating PDB Sequences

To properly validate a sequence from a PDB record, one must first derive the implicit
sequence in the ATOM records. This is a nontrivial processing step. If the structure
has gaps because of lack of completeness, there may only be a set of implicit se-
quence fragments for a given chain. Each of these fragments must be aligned to the
explicit sequence of the same chain provided within the SEQRES entry. This treat-
ment will produce the complete chemical graph, including the parts of the biological
sequence that may be missing coordinate data. This kind of validation is done on
creation of records for the MMDB and mmCIF databases.

The best source of validated protein and nucleic acid sequences in single-letter
code derived from PDB structure records is NCBI’'s MMDB service, which is part
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Figure 5.3. Testing a three-dimensional viewer for sequence numbering artifacts with the
structure 3TS1 (Brick et al., 1989). WebMol, a Java applet, correctly indicates both the
explicit and implicit sequences of the structure. Note the off-by-two difference in the num-
bering in the two columns of numbers in the inset window on the lower right. The actual
sequence embedded in the PDB file is 419 residues long, but the COOH-terminal portion
of the protein is lacking coordinates; it also has two missing residues. (See color plate.)

of the Entrez system. The sequence records from our insulin example have database
accessions constructed systematically and can be retrieved from the protein sequence
division of Entrez using the accessions pdb|3INS|A, pdb|3INS|B,
pdb|3INS|C, and pdb|3INS|D. PDB files also have references in db_xref
records to sequences in the SWISS-PROT protein database. Note that the SWISS-
PROT sequences will not necessarily correspond to the structure, since the validation
process described here is not carried out when these links are made! Also, note that
many PDB files currently have ambiguously indicated taxonomy, reflecting the pres-
ence in some of three-dimensional structures of complexes of molecules that come
from different species. The PDBeast project at NCBI has incorporated the correct
taxonomic information for each biopolymer found within a given structure.

MMDB: MOLECULAR MODELING DATABASE AT NCBI

NCBI’s Molecular Modeling Database (MMDB; Hogue et al., 1996) is an integral
part of NCBI’s Entrez information retrieval system (cf. Chapter 7). It is a compilation
of all the Brookhaven Protein Data Bank (Bernstein et al., 1977) three-dimensional
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structures of biomolecules from crystallographic and NMR studies. MMDB records
are in ASN.1 format (Rose, 1990) rather than in PDB format. Despite this, PDB-
formatted files can also be obtained from MMDB. By representing the data in ASN.1
format, MMDB records have value-added information compared with the original
PDB entries. Additional information includes explicit chemical graph information
resulting from an extensive suite of validation procedures, the addition of uniformly
derived secondary structure definitions, structure domain information, citation match-
ing to MEDLINE, and the molecule-based assignment of taxonomy to each biolog-
ically derived protein or nucleic acid chain.

Free Text Query of Structure Records

The MMDB database can be searched from the NCBI home page using Entrez.
(MMDB is also referred to as the NCBI Structure division.) Search fields in MMDB
include PDB and MMDB ID codes, free text from the original PDB REMARK
records, author name, and other bibliographic fields. For more specific, fielded que-
ries, the RCSB site is recommended.

MMDB Structure Summary

MMDB’s Web interface provides a Structure Summary page for each MMDB struc-
ture record, as shown in Figure 5.4. MMDB Structure Summary pages provide the
FASTA-formatted sequences for each chain in the structure, links to MEDLINE
references, links to the 3DBAtlas record and the Brookhaven PDB site, links to
protein or nucleic acid sequence neighbors for each chain in the structure, and links
to VAST structure-structure comparisons for each domain on each chain in the
structure.

BLAST Against PDB Sequences: New Sequence Similarities

When a researcher wishes to find a structure related to a new sequence, NCBI’s
BLAST (Altschul et al., 1990) can be used because the BLAST databases contain a
copy of all the validated sequences from MMDB. The BLAST Web interface can be
used to perform the query by pasting a sequence in FASTA format into the sequence
entry box and then selecting the “pdb” sequence database. This will yield a search
against all the validated sequences in the current public structure database. More
information on performing BLAST runs can be found in Chapter 8.

Entrez Neighboring: Known Sequence Similarities

If one is starting with a sequence that is already in Entrez, BLAST has, in essence,
already been performed. Structures that are similar in sequence to a given protein
sequence can be found by means of Entrez’s neighboring facilities. Details on how
to perform such searches are presented in Chapter 7.
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Figure 5.4. Structure query from NCBI with the structure 1BNR (Bycroft et al., 1991). The
Structure Summary links the user to RCSB through the PDB ID link, as well as to validated
sequence files for each biopolymer, sequence, and three-dimensional structure neighbors
through the VAST system. This system is more efficient than the RCSB system (Fig. 5.2) for
retrieval because visualization, sequence, and structure neighbor links are made directly

on the structure summary page and do not require fetching more Web pages.
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STRUCTURE FILE FORMATS

PDB

The PDB file format is column oriented, like that of the punched cards used by
early FORTRAN programmers. The exact file format specification is available
through the PDB Web site. Most software developed by structural scientists is written
in FORTRAN, whereas the rest of the bioinformatics world has adopted other lan-
guages, such as those based on C. PDB files are often a paradox: they look rather
easy to parse, but they have a few nasty surprises, as already alluded to in this
chapter. To the uninitiated, the most obvious problem is that the information about
biopolymer bonds is missing, obliging one to program in the rules of chemistry,
clues to the identity of each atom given by the naming conventions of PDB, and
robust exception handling. PDB parsing software often needs lists of synonyms and
tables of exceptions to correctly interpret the information. However this chapter is
not intended to be a manual of how to construct a PDB parser.

Two newer chemical-based formats have emerged: mmCIF (MacroMolecular
Chemical Interchange Format) and MMDB (Molecular Modeling Database Format).
Both of these file formats are attempts to modernize PDB information. Both start by
using data description languages, which are consistently machine parsable. The data
description languages use ‘‘tag value” pairs, which are like variable names and values
used in a programming language. In both cases, the format specification is composed
in a machine-readable form, and there is software that uses this format specification
document to validate incoming streams of data. Both file formats are populated from
PDB file data using the strategy of alignment-based reconstruction of the implicit
ATOM and HETATM chemical graphs with the explicit SEQRES chemical graphs,
together with extensive validation, which is recorded in the file. As a result, both of
these file formats are superior for integrating with biomolecular sequence databases
over PDB format data files, and their use in future software is encouraged.

mmCIF

The mmCIF (Bourne et al., 1995) file format was originally intended to be a bio-
polymer extension of the CIF (Chemical Interchange Format; Hall et al., 1991) fa-
miliar to small-molecule crystallographers and is based on a subset of the STAR
syntax (Hall et al., 1991). CIF software for parsing and validating format specifi-
cations is not forward-compatible with mmCIF, since these have different imple-
mentations for the STAR syntax. The underlying data organization in an mmCIF
record is a set of relational tables. The mmCIF project refers to their format speci-
fication as the mmCIF dictionary, kept on the Web at the Nucleic Acids Database
site. The mmCIF dictionary is a large document containing specifications for holding
the information stored in PDB files as well as many other data items derivable from
the primary coordinate data, such as bond angles. The mmCIF data specification
gives this data a consistent interface, which has been used to implement the NDB
Protein Finder, a Web-based query format in a relational database style, and is also
used as the basis for the new RCSB software systems.

Validating an incoming stream of data against the large mmCIF dictionary entails
significant computational time; hence, mmCIF is probably destined to be an archival
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and advanced query format. Software libraries for reading mmCIF tables into rela-
tional tables into memory in FORTRAN and C are available.

MMDB

The MMDB file format is specified by means of the ASN.1 data description language
(Rose, 1990), which is used in a variety of other settings, surprisingly enough in-
cluding applications in telecommunications and automotive manufacturing. Because
the US National Library of Medicine also uses ASN.1 data specifications for se-
quence and bibliographic information, the MMDB format borrows certain elements
from other data specifications, such as the parts used in describing bibliographic
references cited in the data record. ASN.1 files can appear as human-readable text
files or as a variety of binary and packed binary files that can be decoded by any
hardware platform. The MMDB standard residue dictionary is a lookup table of
information about the chemical graphs of standard biopolymer residue types. The
MMDB format specification is kept inside the NCBI toolkit distribution, but a
browser is available over the Web for a quick look. The MMDB ASN.1 specification
is much more compact and has fewer data items than the mmCIF dictionary, avoiding
derivable data altogether.

In contrast to the relational table design of mmCIF, the MMDB data records are
structured as hierarchical records. In terms of performance, ASN.1-formatted MMDB
files provide for much faster input and output than do mmCIF or PDB records. Their
nested hierarchy requires fewer validation steps at load time than the relational
scheme in mmCIF or in the PDB file format; hence, ASN.1 files are ideal for three-
dimensional structure database browsing.

A complete application programming interface is available for MMDB as part
of the NCBI toolkit, containing a wide variety of C code libraries and applications.
Both an ASN.1 input/output programming interface layer and a molecular computing
layer (MMDB-API) are present in the NCBI toolkit. The NCBI toolkit supports x86
and alpha-based Windows’ platforms, Macintosh 68K and PowerPC CPUs, and a
wide variety of UNIX platforms. The three-dimensional structure database viewer
(Cn3D) is an MMDB-API-based application with source code included in the NCBI
toolkit.

VISUALIZING STRUCTURAL INFORMATION

Multiple Representation Styles

We often use multiple styles of graphical representation to see different aspects of
molecular structure. Typical images of a protein structure are shown in Figure 5.5
(see also color plate). Here, the enzyme barnase 1BN1 (Buckle et al., 1993) appears
both in wire-frame and space-filling model formats, as produced by RasMol (Sayle
and Milner-White, 1995).

Because the protein structure record 1BN1 has three barnase molecules in the
crystallographic unit, the PDB file has been hand-edited using a text editor to delete
the superfluous chains. Editing data files is an accepted and widespread practice in
three-dimensional molecular structure software, forcing the three-dimensional struc-
ture viewer to show what the user wants. In this case, the crystallographic data
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(b)

(d)

Figure 5.5. A constellation of viewing alternatives using RasMol with a portion of the
barnase structure 1BN1 (Buckle et al., 1993). 1BN1 has three barnase molecules in the
asymmetric unit. For this figure, the author edited the PDB file to remove two extra barnase
molecules to make the images. Like most crystal structures, 1BN1 has no hydrogen loca-
tions. (a) Barnase in CPK coloring (element-based coloring) in a wire-frame representation.
(b) Barnase in a space-filling representation. (c) Barnase in an a-carbon backbone repre-
sentation, colored by residue type. The command line was used to select all the tryptophan
residues, render them with “sticks,” color them purple, and show a dot surface represen-
tation. (d) Barnase in a cartoon format showing secondary structure, a-helices in red; -
strands in yellow. Note that in all cases the default atom or residue coloring schemes used
are at the discretion of the author of the software. (See color plate.)

recorded in the three-dimensional structure does not represent the functional biolog-
ical unit. In our example, the molecule barnase is a monomer; however, we have
three molecules in the crystallographic unit. In our other example, 3TS1 (Brick et
al., 1989) (Fig. 5.3), the molecule is a dimer, but only one of the symmetric subunits
is recorded in the PDB file.

The wire-frame image in Figure 5.5a clearly shows the chemistry of the barnase
structure, and we can easily trace of the sequence of barnase on the image of its
biopolymer in an interactive computer display. The space-filling model in Figure
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5.5b gives a good indication of the size and surface of the biopolymer, yet it is
difficult to follow the details of chemistry and bonding in this representation. The
composite illustration in Figure 5.5¢ shows an a-carbon backbone in a typical
pseudo-structure representation. The lines drawn are not actual chemical bonds, but
they guide us along the path made by the a-carbons of the protein backbone. These
are also called “‘virtual bonds.”” The purple tryptophan side chains have been selected
and drawn together with a dot surface. This composite illustration highlights the
volume taken up by the three tryptophan side chains in three hydrophobic core
regions of barnase, while effectively hiding most of the structure’s details.

The ribbon model in Figure 5.5d shows the organization of the structural path
of the secondary structure elements of the protein chain (a-helix and [-sheet
regions). This representation is very often used, with the arrowheads indicating the
N-to-C-terminal direction of the secondary structure elements, and is most effective
for identifying secondary structures within complex topologies.

The variety of information conveyed by the different views in Figure 5.5 illus-
trates the need to visualize three-dimensional biopolymer structure data in unique
ways that are not common to other three-dimensional graphics applications. This
requirement often precludes the effective use of software from the ‘‘macroscopic
world,” such as computer-aided design (CAD) or virtual reality modeling language
(VRML) packages.

Picture the Data: Populations, Degeneracy, and Dynamics

Both X-ray and NMR techniques infer three-dimensional structure from a synchro-
nized population of molecules—synchronized in space as an ordered crystal lattice
or synchronized in behavior as nuclear spin states are organized by an external
magnetic field. In both cases, information is gathered from the population as a whole.
The coordinate (x, y, z) locations of atoms in a structure are derived using numerical
methods. These fit the expected chemical graph of the sample into the three-dimen-
sional data derived from the experimental data. The expected chemical graph can
include a mixture of biopolymer sequence-derived information as well as the chem-
ical graph of any other known small molecules present in the sample, such as sub-
strates, prosthetic groups, and ions.

One somewhat unexpected result of the use of molecular populations is the
assignment of degenerate coordinates in a database record, i.e., more than one co-
ordinate location for a single atom in the chemical graph. This is recorded when the
population of molecules has observable conformational heterogeneity.

NMR Models and Ensembles

Figure 5.6 (see also color plate) presents four three-dimensional structures (images
on the left were determined using X-ray crystallography and the right using NMR).
The NMR structures on the left appear “fuzzy.” In fact, there are several different,
complete structures piled one on top of another in these images. Each structure is
referred to as a model, and the set of models is an ensemble. Each model in the
ensemble is a chirally correct, plausible structure that fits the underlying NMR data
as well as any other model in the ensemble.

The images from the ensemble of an NMR structure (Fig. 5.6, b and d) show
the dynamic variation of a molecule in solution. This reflects the conditions of the
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(d)

Figure 5.6. A comparison of three-dimensional structure data obtained by crystallography
(left) and NMR methods (right), as seen in Cn3D. (a) The crystal structure 1BRN (Buckle and
Fersht, 1994) has two barnase molecules in the asymmetric unit, although these are not
dimers in solution. The image is rendered with an a-carbon backbone trace colored by
secondary structure (green helices and yellow sheets), and the amino acid residues are
shown with a wire-frame rendering, colored by residue type. (b) The NMR structure 1BNR
(Bycroft et al., 1991) showing barnase in solution. Here, there are 20 different models in
the ensemble of structures. The coloring and rendering are exactly as the crystal structure
to its left. (c) The crystal structure 109D (Quintana et al., 1991) showing a complex between
a minor-groove binding bis-benzimidazole drug and a DNA fragment. Note the phosphate
ion in the lower left corner. (d) The NMR structure 107D showing four models of a complex
between a different minor-groove binding compound (Duocarmycin A) and a different
DNA fragment. It appears that the three-dimensional superposition of these ensembles is
incorrectly shifted along the axis of the DNA, an error in PDB’s processing of this particular
file. (See color plate.)
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experiment: molecules free in solution with freedom to pursue dynamic conforma-
tional changes. In contrast, the X-ray structures (Fig. 5.6, a and c) provide a very
strong mental image of a static molecule. This also reflects the conditions of the
experiment, an ordered crystal constrained in its freedom to explore its conforma-
tional dynamics. These mental images direct our interpretation of structure. If we
measure distance between two atoms using an X-ray structure, we may get a single
value. However, we can get a range of values for the same distance in each model
looking at an ensemble of an NMR structure. Clearly, our interpretation of this
distance can be dependent on the source of the three-dimensional structure data! It
is prudent to steer clear of any software that ignores or fails to show the population
degeneracy present in structure database records, since the absence of such infor-
mation can further skew biological interpretations. Measuring the distance between
two atoms in an NMR structure using software that hides the other members of the
ensemble will give only one value and not the true range of distance observed by
the experimentalist.

Correlated Disorder

Typically, X-ray structures have one and only one model. Some subsets of atoms,
however, may have degenerate coordinates, which we will refer to as correlated
disorder (Fig. 5.7a; see also color plate). Many X-ray structure database records
show correlated disorder. Both correlated disorder and ensembles are often ignored
by three-dimensional molecular graphics software. Some programs show only the
first model in an ensemble, or the first location of each atom in a correlated disorder
set, ignoring the rest of the degenerate coordinate values. Worse still, sometimes,
erroneous bonds are drawn between the degenerate locations, making a mess of the
structure, as seen in Figure 5.7b.

Local Dynamics

A single technique can be used to constrain the conformation of some atoms differ-
ently from others in the same structure. For example, an internal atom or a backbone
atom that is locked in by a multitude of interactions may appear largely invariant in
NMR or X-ray data, whereas an atom on the surface of the molecule may have much
more conformational freedom (consider the size of the smears of different residues
in Fig. 5.6b). Interior protein side chains typically show much less flexibility in
ensembles, so it might be concluded that the interiors of proteins lack conformational
dynamics altogether. However, a more sensitive, biophysical method, time-resolved
fluorescence spectroscopy of single tryptophan residues, has a unique ability to detect
heterogeneity (but not the actual coordinates) of the tryptophan side-chain confor-
mation. Years of study using this method has shown that, time and time again,
populations of interior tryptophans in pure proteins are more often in heterogeneous
conformations than not (Beechem and Brand, 1985). This method was shown to be
able to detect rotamers of tryptophan within single crystals of erabutoxin, where X-
ray crystallography could not (Dahms and Szabo, 1995). When interpreting three-
dimensional structure data, remember that heterogeneity does persist in the data, and
that the NMR and X-ray methods can be blind to all but the most populated con-
formations in the sample.

929
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(b)

Figure 5.7. An example of crystallographic correlated disorder encoded in PDB files. This
is chain C of the HIV protease structure 5HVP (Fitzgerald et al.,, 1990). This chain is in
asymmetric binding site and can orient itself in two different directions. Therefore, it has
a single chemical graph, but each atom can be in one of two different locations. (a) The
correct bonding is shown with an MMDB-generated Kinemage file; magenta and red are
the correlated disorder ensembles as originally recorded by the depositor, bonding calcu-
lated using standard-residue dictionary matching. (b) Bonding of the same chain in RasMol,
wherein the disorder ensemble information is ignored, and all coordinates are displayed
and all possible bonds are bonded together. (See color plate.)

DATABASE STRUCTURE VIEWERS

In the past several years, the software used to examine and display structure infor-
mation has been greatly improved in terms of the quality of visualization and, more
importantly, in terms of being able to relate sequence information to structure
information.



DATABASE STRUCTURE VIEWERS

Visualization Tools

Although the RCSB Web site provides a Java-based three-dimensional applet for
visualizing PDB data, the applet does not currently support the display of nonprotein
structures. For this and other reasons, the use of RasMol v2.7 is instead recom-
mended for viewing structural data downloaded from RCSB; more information on
RasMol appears in the following section. If a Java-based viewer is preferred,
WebMol is recommended, and an example of WebMol output is shown in Figure
5.3. With the advent of many homemade visualization programs that can easily be
downloaded from the Internet, the reader is strongly cautioned to only use mature,
well-established visualization tools that have been thoroughly tested and have un-
dergone critical peer review.

RasMol and RasMol-Based Viewers

As mentioned above, several viewers for examining PDB files are available (San-
chez-Ferrer et al., 1995). The most popular one is RasMol (Sayle and Milner-White,
1995). RasMol represents a breakthrough in software-driven three-dimensional
graphics, and its source code is a recommended study material for anyone interested
in high-performance three-dimensional graphics. RasMol treats PDB data with ex-
treme caution and often recomputes information, making up for inconsistencies in
the underlying database. It does not try to validate the chemical graph of sequences
or structures encoded in PDB files. RasMol does not perform internally either
dictionary-based standard residue validations or alignment of explicit and implicit
sequences. RasMol 2.7.1 contains significant improvements that allow one to display
information in correlated disorder ensembles and select different NMR models. It
also is capable of reading mmCIF-formatted three-dimensional structure files and is
thus the viewer of choice for such data. Other data elements encoded in PDB files,
such as disulfide bonds, are recomputed based on rules of chemistry, rather than
validated.

RasMol contains many excellent output formats and can be used with the Mol-
script program (Kraulis, 1991) to make wonderful PostScript™ ribbon diagrams for
publication. To make optimal use of RasMol, however, one must master its com-
mand-line language, a familiar feature of many legacy three-dimensional structure
programs.

Several new programs are becoming available and are free for academic users.
Based on RasMol’s software-driven three-dimensional-rendering algorithms and
sparse PDB parser, these programs include Chime™, a Netscape™ plug-in. Another
program, WebMol, is a Java-based three-dimensional structure viewer apparently
based on RasMol-style rendering, as seen in Figure 5.3.

™

MMDB Viewer: Cn3D

Cn3D (for “see in 3-D”’) is a three-dimensional structure viewer used for viewing
MMDB data records. Because the chemical graph ambiguities in data in PDB entries
have been removed to make MMDB data records and because all the bonding in-
formation is explicit, Cn3D has the luxury of being able to display three-dimensional
database structures consistently, without the parsing, validation, and exception-han-
dling overhead required of programs that read PDB files. Cn3D’s default image of
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a structure is more intelligently displayed because it works without fear of misrep-
resenting the data. However, Cn3D is dependent on the complete chemical graph
information in the ASN.1 records of MMDB, and, as such, it does not read in PDB
files.

Cn3D 3.0 has a much richer feature set than its predecessors, and it now allows
selection of subsets of molecular structure and independent settings of rendering and
coloring aspects of that feature. It has state-saving capabilities, making it possible
to color and render a structure, and then save the information right into the ASN.1
structure record, a departure from the hand-editing of PDB files or writing scripts.
This information can be shared with other Cn3D users on different platforms.

The images shown in Figures 5.1 and 5.6 are from Cn3D 3.0, now based on
OpenGL three-dimensional graphics. This provides graphics for publication-quality
images that are much better than previous versions, but the original Viewer3D ver-
sion of Cn3D 3.0 is available for computers that are not capable of displaying
OpenGL or that are too slow.

Also unique to Cn3D is a capacity to animate three-dimensional structures.
Cn3D’s animation controls resemble tape recorder controls and are used for display-
ing quickly the members of a multiple structure ensemble one after the other, making
an animated three-dimensional movie. The GO button makes the images animated,
and the user can rotate or zoom the structure while it is playing the animation. This
is particularly useful for locking at NMR ensembles or a series of time steps of
structures undergoing motions or protein folding. The animation feature also allows
Cn3D to provide superior muitiple structure alignment when used together with the
VAST structure-structure comparison system, described later in this chapter.

Other 3D Viewers: Mage, CAD, and VRML

A variety of file formats have been used to present three-dimensional biomolecular
structure data lacking in chemistry-specific data representations. These are viewed
in generic three-dimensional data viewers such as those used for ‘“macroscopic’ data,
like engineering software or virtual-reality browsers. File formats such as VRML
contain three-dimensional graphical display information but little or no information
about the underlying chemical graph of a molecule. Furthermore, it is difficult to
encode the variety of rendering styles in such a file; one needs a separate VRML
file for a space-filling model of a molecule, a wire-frame model, a ball-and-stick
model, and so on, because each explicit list of graphics objects (cylinders, lines,
spheres) must be contained in the file.

Biomolecular three-dimensional structure database records are currently not
compatible with ““macroscopic’ software tools such as those based on CAD software.
Computer-aided design software represents a mature, robust technology, generally
superior to the available molecular structure software. However, CAD software and
file formats in general are ill-suited to examine the molecular world, owing to the
lack of certain “‘specialty’” views and analytical functions built in for the examination
of details of protein structures.

Making Presentation Graphics

To get the best possible publication-quality picture out of any molecular graphics
software, first consider whether a bitmap or a vector-based graphic image is needed.
Bitmaps are made by programsglikeRasMol and Cn3D—they reproduce exactly
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what you see on the screen, and are usually the source of trouble in terms of pix-
ellation (“‘the jaggies), as shown in Figure 5.7, a bitmap of 380—400 pixels. High-
quality print resolution is usually at 300—600 dots per inch, but monitors have far
less information in pixels per inch (normally 72 dpi), so a big image on a screen is
quite tiny when printed at the same resolution on a printer. Expanding the image to
fit a page causes exaggeration of pixel steps on diagonal lines.

The best advice for bitmaps is to use as big a monitor/desktop as possible,
maximizing the number of pixels included in the image. This may mean borrowing
a colleagues’ 21-in monitor or using a graphics card that offers a “‘virtual desktop”
that is larger than the monitor being used in pixel count. In any case, always fill the
entire screen with the viewer window before saving a bitmap image for publication.

ADVANCED STRUCTURE MODELING

Tools that go beyond simple visualization are now emerging and are freely available.
Biologists often want to display structures with information about charge distribution,
surface accessibility, and molecular shape; they also want to be able to perform
simple mutagenesis experiments and more complex structure modeling. SwissPDB
Viewer, shown in Figure 5.8, also known as Deep View, is provided free of charge
to academics and can address a good number of these needs. It is a multi platform
(Mac, Win, and Linux) OpenGL-based tool that has the ability to generate molecular
surfaces, align multiple proteins, use scoring functions, as well as do simple, fast
modeling, including site-directed mutagenesis and more complex modeling such as
loop rebuilding. An excellent tutorial for SwissPDB Viewer developed by Gale
Rhodes is one of the best starting points for making the best use of this tool. It has
the capability to dump formatted files for the free ray-tracing software POV-Ray, and
it can be used to make stunning images of molecular structures, easily suitable for
a journal cover.

STRUCTURE SIMILARITY SEARCHING

Although a sequence-sequence similarity program provides an alignment of two se-
quences, a structure-structure similarity program provides a three-dimensional struc-
tural superposition. This superposition results from a set of three-dimensional rota-
tion-translation matrix operations that superimpose similar parts of the structure. A
conventional sequence alignment can be derived from three-dimensional superposi-
tion by finding the a-carbons in the protein backbone that are superimposed in space.
Structure similarity search services are based on the premise that some similarity
metric can be computed between two structures and used to assess their similarity,
much in the same way a BLAST alignment is scored. A structure similarity search
service can take a three-dimensional protein structure, either already in PDB or a
new one, and compare that structure, making three-dimensional superpositions with
other structures in the database and reporting the best match without knowing any-
thing about the sequence. If a match is made between two structures that are not
related by any measurable sequence similarity, it is indeed a surprising discovery.
For this type of data to be useful, the similarity metric must be meaningful. A large
fraction of structures, for example, have (-sheets. Although a similar substructure
may include a single SB-hairpin turn with two strands, one can find an incredibly
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Figure 5.8. SwissPDB Viewer 3.51 with OpenGL, showing the calmodulin structure 2CLN.
The binding of the inhibitor TFP is shown in yellow. The side panel allows great control
over the rendering of the structure image, and menus provide a wealth of options and
tools for structure superposition and modeling including mutagenesis and loop modeling,
making it a complete structure modeling and analysis package. (See color plate.)

large number of such similarities in the PDB database, so these similarities are simply
not surprising or informative. A number of structure similarity searching systems are
now available on the Internet, and almost all of them can be found following links
from the RCSB Structure Summary page. The process of similarity searching pres-
ents some interesting high-performance computational challenges, and this is ad-
dressed in different ways, ranging from human curation, as the SCOP system pro-
vides, to fully automated systems, such as DALI, SCOP, or the CE system provided
by RCSB.

The Vector Alignment Search Tool (VAST; Gibrat et al., 1996) provides a sim-
ilarity measure of three-dimensional structure. It uses vectors derived from secondary
structure elements, with no sequence information being used in the search. VAST is
capable of finding structural similarities when no sequence similarity is detected.
VAST, like BLAST, is run on all entries in the database in an N X N manner, and
the results are stored for fast retrieval using the Entrez interface. More than 20,000
domain substructures within the current three-dimensional structure database have
been compared with one another using the VAST algorithm, the structure-structure
(Fig. 5.9) superpositions recorded, and alignments of sequence derived from the
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superposition. The VAST algorithm focuses on similarities that are surprising in the
statistical sense. One does not waste time examining many similarities of small
substructures that occur by chance in protein structure comparison. For example,
very many small segments of 3-sheets have obvious, but not surprising, similarities.
The similarities detected by VAST are often examples of remote homology, unde-
tectable by sequence comparison. As such, they may provide a broader view of the
structure, function, and evolution of a protein family.

The VAST system stands out amongst these comparative tools because (a) it has
a clearly defined similarity metric leading to surprising relationships, (b) it has an
adjustable interface that shows nonredundant hits for a quick first look at the most
interesting relationships, without seeing the same relationships lots of times, (c) it
provides a domain-based structure comparison rather than a whole protein compar-
ison, and (d) it has the capability to integrate with Cn3D as a visualization tool for
inspecting surprising structure relationships in detail. The interface between a VAST
hit list search and the Cn3D structure superposition interface can be seen in Figure
5.9. In addition to a listing of similar structures, VAST-derived structure neighbors
contain detailed residue-by-residue alignments and three-dimensional transformation
matrices for structural superposition. In practice, refined alignments from VAST ap-
pear conservative, choosing a highly similar ‘“‘core’ substructure compared with
DALI (Holm and Sander, 1996) superpositions. With the VAST superposition, one
easily identifies regions in which protein evolution has modified the structure,
whereas DALI superpositions may be more useful for comparisons involved in mak-
ing structural models. Both VAST and DALI superpositions are excellent tools for
investigating relationships in protein structure, especially when used together with
the SCOP (Murzin et al., 1995) database of protein families.

INTERNET RESOURCES FOR TOPICS PRESENTED IN CHAPTER 5

BIND http://bioinfo.mshri.on.ca

Imagemagick http://http://www.wizards.dupont.com/cristy/
ImageMagick.html

http://ndbserver.rutgers.edu/NDB/mmcif/index.html

http://www.ncbi.nlm.nih.gov/

mmCif Project

National Center for
Biotechnology
Information (NCBI)

NCBI Toolkit http://www.ncbi.nlm.nih.gov/Toolbox

Nucleic Acids Database
(NDB)

POV-RayAY

Protein Data Bank at
RCSB

RasMol

SwissPDB Viewer/Deep
View

WebMol

http://ndbserver.rutgers.edu/

http://www.povray.org/
http://www.rcsb.org/

http://www.bernstein-plus-sons.com/
http://http://www.expasy.ch/spdbv/mainpage.html

http://www.cmpharm.ucsf.edu/~walther/webmol/
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PROBLEM SET

1. Calmodulin is a calcium-dependent protein that modulates other protein activity
via protein interactions. The overall structure of calmodulin is variable, and is
modulated by calcium. An NMR structure of calmodulin is found in PDB record
2BBN, complexed with a peptide. How many models are in this structure? Find
other calmodulin structures from the PDB site, and inspect them using RasMol.
How many ‘““‘gross,” unique conformations can this protein be found in? Where,
in terms of secondary structure, is the site of the largest structural change?

2. The black beetle virus coat protein (pdbl2BBV) forms a very interesting trianglu-
lar shape. Using VAST, examine the list of neighbors to the A chain. Examine
some of the pairwise alignments in Cn3D. What is the extent of the similarity?
What does this list of neighbors and the structure similarity shared by these pro-
teins suggest about the origin and evolution of eukaryotic viruses?

3. Compare substrate binding in Rossman fold structures, between the tyrosinyl-5'-
adenylate of tyrosyl-tRNA synthetase and the NADH of malate dehydrogenase.
Describe the similarities and differences between the two substrates. Do you think
these are homologous structures or are they related by convergent evolution?

4. Ribosomal protein synthesis or enzyme-based peptide synthesis—which came
first?

Repeat the analysis you did for question 3, examining the difference between
substrates bound to tyrosyl-tRNA synthetase and D-Ala:D-Ala ligase (pdbl1IOV).
Note the substrate is bound to domains 2 and 3 of 11OV, but domain 1 is aligned
with 3TS1. What does the superposition suggest about the activity of domain 1
of 1I0V? According to VAST, what is similar to domain 2 of 110V? How do
you think D-Ala:D-Ala ligase arose in evolution? Speculate on whether enzyme-
catalyzed protein synthesis such as that seen in 110V arose before or after ribo-
somal protein synthesis.
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A few years ago, only a handful of ready-made maps of the human genome existed,
and these were low-resolution maps of small areas. Biomedical researchers wishing
to localize and clone a disease gene were forced, by and large, to map their region
of interest, a time-consuming and painstaking process. This situation has changed
dramatically in recent years, and there are now high-quality genome-wide maps of
several different types containing tens of thousands of DNA markers. With the pend-
ing availability of a finished human sequence, most efforts to construct genomic
maps will come to a halt; however, integrated maps, genome catalogues, and com-
prehensive databases linking positional and functional genomic data will become
even more valuable. Genome projects in other organisms are at various stages, rang-
ing from having only a handful of available maps to having a complete sequence.
By taking advantage of the available maps and DNA sequence, a researcher can, in
many cases, focus in on a candidate region by searching public mapping databases
in a matter of hours rather than by performing laboratory experiments over a course
of months.
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Subsequently, the researcher’s burden has now shifted from mapping the genome
to navigating a vast terra incognita of Web sites, FTP servers, and databases. There
are large databases such as the National Center for Biotechnology Information
(NCBI) Entrez Genomes Division, Genome Database (GDB), and Mouse Genome
Database (MGD), smaller databases serving the primary maps published by genome
centers, sites sponsored by individual chromosome committees, and sites used by
smaller laboratories to publish highly detailed maps of specific regions. Each type
of resource contains information that is valuable in its own right, even when it
overlaps with the information found at others. Finding one’s way around this infor-
mation space is not easy. A recent search for the word ‘‘genome’ using the AltaVista
Web search engine turned up 400,000 potentially relevant documents.

This chapter is intended as a ““map of the maps,” a way to guide readers through
the maze of publicly available genomic mapping resources. The different types of
markers and methods used for genomic mapping will be reviewed and the inherent
complexities in the construction and utilization of genome maps will be discussed.
Several large community databases and method-specific mapping projects will be
presented in detail. Finally, practical examples of how these tools and resources can
be used to aid in specific types of mapping studies such as localizing a new gene or
refining a region of interest will be provided. A complete description of the mapping
resources available for all species would require an entire book. Therefore, this chap-
ter focuses primarily on humans, with some references to resources for other
organisms.

INTERPLAY OF MAPPING AND SEQUENCING

The recent advent of whole-genome sequencing projects for humans and select model
organisms is dramatically impacting the use and utility of genomic map-based in-
formation and methodologies. Genomic maps and DNA sequence are often treated
as separate entities, but large, uninterrupted DNA sequence tracts can be thought of
and used as an ultra-high-resolution mapping technique. Traditional genomic maps
that rely on genomic markers and either clone-based or statistical approaches for
ordering are precursory to finished and completely annotated DNA sequences of
whole chromosomes or genomes. However, such completed genome sequences are
predicted to be publicly available only in 2002 for humans, 2005 for the mouse, and
even later for other mammalian species, although complete sequences are now avail-
able for some individual human chromosomes and selected lower eukaryotes (see
Chapter 15). Until these completed sequences are available, mapping and sequencing
approaches to genomic analysis serve as complementary approaches for chromosome
analysis.

Before determination of an entire chromosome’s sequence, the types of se-
quences available can be roughly grouped into marker/gene-based tags [e.g., ex-
pressed sequence tags (ESTs) and sequence-tagged sites (STSs)], single gene se-
quences, prefinished DNA clone sequences, and completed, continuous genomic
sequence tracts. The first two categories provide rich sources of the genomic markers
used for mapping, but only the last two categories can reliably order genomic ele-
ments. The human genome draft sequence is an example of a prefinished sequence,
in which >90% of the entire sequence is available, but most continuous sequence
tracts are relatively short (usually <100 kb and often <10 kb), thus providing high
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local resolution but little long-range ordering information. Genomic maps can help
provide a context for this sequence information. Thus, two or more sequences con-
taining unique genomic markers can be oriented if these markers are ordered on a
map. In this way, existing maps serve as a scaffold for orienting, directing, and
troubleshooting sequencing projects. Similarly, users can first define a chromosomal
region of interest using a traditional map approach and then can identify relevant
DNA sequences to analyze by finding long sequences containing markers mapping
within the defined region. NCBI tools such as BLAST and electronic PCR (e-PCR)
are valuable for finding marker/sequence identities, and several of the resources
discussed below provide marker/sequence integration.

As large sequence tracts emerge from the human and model organism projects,
sequence-based ordering of genomic landmarks will eventually supplant map-based
ordering methods. The evolution from a mapped chromosome to the determination
of the chromosome’s complete sequence is marked by increasing incorporation of
partial genomic sequence tracts into the underlying map. Once complete, finished
sequences can be used to confirm map-determined marker orders. Given the error
rates inherent in both map and sequence-assembly methodology, it is good practice
to use both map and sequence information simultaneously for independent verifica-
tion of regional order.

GENOMIC MAP ELEMENTS

DNA Markers

A DNA marker is simply a uniquely identifiable segment of DNA. There are several
different types of markers, usually ranging in size from one to 300—400 nucleotide
bases in size. Markers can be thought of as landmarks, and a set of markers whose
relative positions (or order) within a genome are known comprises a map. Markers
can be categorized in several ways. Some markers are polymorphic, and others are
not (monomorphic). Detection of markers may be either PCR based or hybridization
based. Some markers lie in a sequence of DNA that is expressed; some do not, or
their expression status may be unknown.

PCR-based markers are commonly referred to as sequence-tagged sites (STSs).
An STS is defined as a segment of genomic DNA that can be uniquely PCR amplified
by its primer sequences. STSs are commonly used in the construction of physical
maps. STS markers may be developed from any genomic sequence of interest, such
as from characterized and sequenced genes, or from expressed sequence tags (ESTs,
Chapter 12). Alternatively, STSs may be randomly identified from total genomic
DNA. The EST database (dbEST) at NCBI stores information on most STS markers.

Polymorphic Markers

Polymorphic markers are those that show sequence variation among individuals.
Polymorphic markers are used to construct genetic linkage maps. The number of
alleles observed in a population for a given polymorphism, which can vary from two
to >30, determines the degree of polymorphism. For many studies, highly polymor-
phic markers (>5 alleles) are most useful.
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Polymorphisms may arise from several types of sequence variations. One of the
earlier types of polymorphic markers used for genomic mapping is a restriction
fragment length polymorphism (RFLP). An RFLP arises from changes in the se-
quence of a restriction enzyme recognition site, which alters the digestion pat-
terns observed during hybridization-based analysis. Another type of hybridization-
based marker arises from a variable number of tandem repeat units (VNTR). A
VNTR locus usually has several alleles, each containing a different number of
copies of a common motif of at least 16 nucleotides tandemly oriented along a
chromosome.

A third type of polymorphism is due to tandem repeats of short sequences that
can be detected by PCR-based analysis. These are known variously as microsatellites,
short tandem repeats (STRs), STR polymorphisms (STRPs), or short sequence length
polymorphisms (SSLPs). These repeat sequences usually consist of two, three, or
four nucleotides and are plentiful in most organisms. All PCR-converted STR mark-
ers (those for which a pair of oligonucleotides flanking the polymorphic site suitable
for PCR amplification of the locus has been designed) are considered to be STSs.
The advent of PCR-based analysis quickly made microsatellites the markers of choice
for mapping.

Another polymorphic type of PCR-based marker is a single nucleotide poly-
morphism (SNP), which results from a base variation at a single nucleotide position.
Most SNPs have only two alleles (biallelic). Because of their low heterozygosity,
maps of SNPs require a much higher marker density than maps of microsatellites.
SNPs occur frequently in most genomes, with one SNP occurring on average ap-
proximately once in every 100—300 bases in humans. SNPs lend themselves to
highly automated fluidic or DNA chip-based analyses and have quickly become the
focus of several large-scale development and mapping projects in humans and other
organisms. Further details about all of these types of markers can be found elsewhere
(Chakravarti and Lynn, 1999; Dietrich et al., 1999).

DNA Clones

The possibility of physically mapping eukaryotic genomes was largely realized with
the advent of cloning vehicles that could efficiently and reproducibly propagate large
DNA fragments. The first generation of large-insert cloning was made possible with
yeast artificial chromosome (YAC) libraries (Burke et al., 1987). Because YACs can
contain fragments up to 2 Mb, they are suitable for quickly making low-resolution
maps of large chromosomal regions, and the first whole-genome physical maps of
several eukaryotes were constructed with YACs. However, although YAC libraries
work well for ordering STSs and for joining small physical maps, the high rate of
chimerism and instability of these clones makes them unsuitable for DNA
sequencing.

The second and current generation of large-insert clones consists of bacterial
artificial chromosomes (BACSs) and P1-artificial chromosomes, both of which act as
episomes in bacterial cells rather than as eukaryotic artificial chromosomes. Bacterial
propagation has several advantages, including higher DNA yields, ease-of-use for
sequencing, and high integrity of the insert during propagation. As such, despite the
relatively limited insert sizes (usually 100—-300 kb), BACs and PACs have largely
replaced YACs as the clones of choice for large-genome mapping and sequencing
projects (Iaonnou et al., 1994; Shizuya et al., 1992). DNA fingerprinting has been
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applied to BACs and PACs to determine insert overlaps and to construct clone con-
tigs. In this technique, clones are digested with a restriction enzyme, and the resulting
fragment patterns are compared between clones to identify those sharing subsets of
identically sized fragments. In addition, the ends of BAC and PAC inserts can be
directly sequenced; clones whose insert-end sequences have been determined are
referred to as sequence-tagged clones (STCs). Both DNA fingerprinting and STC
generation now play instrumental roles in physical mapping strategies, as will be
discussed below.

TYPES OF MAPS

Cytogenetic Maps

Cytogenetic maps are those in which the markers are localized to chromosomes in
a manner that can be directly imaged. Traditional cytogenetic mapping hybridizes a
radioactively or fluorescently labeled DNA probe to a chromosome preparation, usu-
ally in parallel with a chromosomal stain such as Giemsa, which produces a banded
karyotype of each chromosome (Pinkel et al., 1986). This allows assignment of the
probe to a specific chromosomal band or region. Assignment of cytogenetic positions
in this manner is dependent on some subjective criteria (variability in technology,
methodology, interpretation, reproducibility, and definition of band boundaries).
Thus, inferred cytogenetic positions are often fairly large and occasionally overin-
terpreted, and some independent verification of cytogenetic position determinations
is warranted for crucial genes, markers, or regions. Probes used for cytogenetic map-
ping are usually large-insert clones containing a gene or polymorphic marker of
interest. Despite the subjective aspects of cytogenetic methodology, karyotype anal-
ysis is an important and relatively simple clinical genetic tool; thus, cytogenetic
positioning remains an important parameter for defining genes, disease loci, and
chromosomal rearrangements.

Newer cytogenetic techniques such as interphase fluorescence in situ hybridi-
zation (FISH) (Lawrence et al., 1990) and fiber FISH (Parra and Windle, 1993)
instead examine chromosomal preparations in which the DNA is either naturally or
mechanically extended. Studies of such extended chromatin have demonstrated a
directly proportional relationship between the distances measured on the image and
the actual physical distance for short stretches, so that a physical distance between
two closely linked probes can be determined with some precision (van den Engh et
al., 1992). However, these techniques have a limited ordering range (=1-2 Mb) and
are not well-suited for high-throughput mapping.

Genetic Linkage Maps

Genetic linkage (GL) maps (also called meiotic maps) rely on the naturally occurring
process of recombination for determination of the relative order of, and map distances
between, polymorphic markers. Crossover and recombination events take place dur-
ing meiosis and allow rearrangement of genetic material between homologous chro-
mosomes. The likelihood of recombination between markers is evaluated using gen-
otypes observed in multigenerational families. Markers between which only a few
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recombination occur are said to be linked, and such markers are usually located close
to each other on the same chromosome. Markers between which many recombina-
tions take place are unlinked and usually lie far apart, either at opposite ends of the
same chromosome or on different chromosomes.

Because the recombination events cannot be easily quantified, a statistical
method of maximum likelihood is usually applied in which the likelihood of two
markers being linked is compared with the likelihood of being unlinked. This like-
lihood ratio is called a “lod” score (for “log of the odds’’), and a lod score greater
than 3 (corresponding to odds of 1,000:1 or greater) is usually taken as evidence
that markers are linked. The lod score is computed at a range of recombination
fraction values between markers (from O to 0.5), and the recombination fraction at
which the lod score is maximized provides an estimate of the distance between
markers. A map function (usually either Haldane or Kosambi) is then used to convert
the recombination fraction into an additive unit of distance measured in centiMorgans
(cM), with 1 cM representing a 1% probability that a recombination has occurred
between two markers on a single chromosome. Because recombination events are
not randomly distributed, map distances on linkage maps are not directly proportional
to physical distances.

The majority of linkage maps are constructed using multipoint linkage analysis,
although multiple pairwise linkage analysis and minimization of recombination are
also valid approaches. Commonly used and publicly available computer programs
for building linkage maps include LINKAGE (Lathrop et al., 1984), CRI-MAP
(Lander and Green, 1987), MultiMap (Matise et al., 1994), MAPMAKER (Lander
et al.,, 1987), and MAP (Collins et al.,, 1996). The MAP-O-MAT Web server is
available for estimation of map distances and for evaluation of statistical support for
order (Matise and Gitlin, 1999).

Because linkage mapping is a based on statistical methods, linkage maps are not
guaranteed to show the correct order of markers. Therefore, it is important to be
critical of the various available maps and to be aware of the statistical criteria that
were used in map construction. Typically, only a subset of markers (framework or
index markers) is mapped with high statistical support. The remainder are either
placed into well-supported intervals or bins or placed into unique map positions but
with low statistical support for order (see additional discussion below).

To facilitate global coordination of human linkage mapping, DNAs from a set
of reference pedigrees collected for map construction were prepared and distributed
by the Centre d’Etude du Polymorphism Humain (CEPH; Dausset et al., 1990).
Nearly all human linkage maps are based on genotypes from the CEPH reference
pedigrees, and genotypes for markers scored in the CEPH pedigrees are deposited
in a public database maintained at CEPH. Most recent maps are composed almost
entirely of highly polymorphic STR markers. These linkage maps have already ex-
ceeded the maximum map resolution possible given the subset of CEPH pedigrees
that are commonly used for map construction, and no further large-scale efforts to
place STR markers on human linkage maps are planned. Thousands of SNPs are
currently being identified and characterized, and a subset are being placed on linkage
maps (Wang et al., 1998).

Linkage mapping is also an important tool in experimental animals, with many
maps already produced at high resolution and others still under development (see
Mapping Projects and Associated Resources, below).
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Radiation Hybrid Maps

Radiation hybrid (RH) mapping is very similar to linkage mapping. Both methods
rely on the identification of chromosome breakage and reassortment. The primary
difference is the mechanism of chromosome breakage. In the construction of radia-
tion hybrids, breaks are induced by the application of lethal doses of radiation to a
donor cell line, which is then rescued by fusion with a recipient cell line (typically
mouse or hamster) and grown in a selective medium such that only fused cells
survive. An RH panel is a library of fusion cells, each of which has a separate
collection of donor fragments. The complete donor genome is represented multiple
times across most RH panels. Each fusion cell, or radiation hybrid, is then scored
by PCR to determine the presence or absence of each marker of interest. Markers
that physically lie near each other will show similar patterns of retention or loss
across a panel of RH cells and behave as if they are linked, whereas markers that
physically lie far apart will show completely dissimilar patterns and behave as if they
are unlinked. Because the breaks are largely randomly distributed, the break frequen-
cies are roughly directly proportional to physical distances. The resulting data set is a
series of positive and negative PCR scores for each marker across the hybrid panel.

These data can be used to statistically infer the position of chromosomal breaks,
and, from that point on, the procedures for map construction are similar to those
used in linkage mapping. A map function is used to convert estimates of breakage
frequency to additive units of distance measured in centirays (cR), with 1 cR rep-
resenting a 1% probability that a chromosomal break has occurred between two
markers in a single hybrid. The resolution of a radiation hybrid map depends on the
size of the chromosomal fragments contained in the hybrids, which in turn is pro-
portional to the amount of irradiation to which the human cell line was exposed.

Most RH maps are built using multipoint linkage analysis, although multiple-
pairwise linkage analysis and minimization of recombination are also valid ap-
proaches. Three genome-wide RH panels exist for humans and are commercially
available, and RH panels are available for many other species as well. Widely used
computer programs for RH mapping are RHMAP (Boehnke et al., 1991), RHMAP-
PER (Slonim et al., 1997), and MultiMap (Matise et al., 1994), and on-line servers
that allow researchers to place their RH mapped markers on existing RH maps are
available. The Radiation Hybrid Database (RHdb) is the central repository for RH
data on panels available in all species. The Radiation Hybrid Information Web site
also contains multi-species information about available RH panels, maps, ongoing
projects, and available computer programs.

Transcript Maps

Of particular interest to researchers chasing disease genes are maps of transcribed
sequences. Although the transcript sequences are mapped using one of the methods
described in this section, and thus do not require a separate mapping technology,
they are often set apart as a separate type of map. These maps consist of expressed
sequences and sequences derived from known genes that have been converted into
STSs and usually placed on conventional physical maps. Recent projects for creating
large numbers of ESTs (Adams et al., 1991; Houlgatte et al., 1995; Hillier et al.,
1996) have made tens of thousands of unique expressed sequences available to the
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mapping laboratories. Transcribed sequence maps can significantly speed the search
for candidate genes once a disease locus has been identified. The largest human
transcript map to date is the GeneMap ‘99, described below.

Physical Maps

Physical maps include maps that either are capable of directly measuring distances
between genomic elements or that use cloned DNA fragments to directly order el-
ements. Many techniques have been created to develop physical maps. The most
widely adopted methodology, due largely to its relative simplicity, is STS content
mapping (Green and Olson, 1990). This technique can resolve regions much larger
than 1 Mb and has the advantage of using convenient PCR-based positional markers.

In STS content maps, STS markers are assayed by PCR against a library of
large-insert clones. If two or more STSs are found to be contained in the same clone,
chances are high that those markers are located close together. (The fact that they
are not close 100% of the time is a reflection of various artifacts in the mapping
procedure, such as the presence of chimeric clones.) The STS content mapping tech-
nique builds a series of contigs (i.e., overlapping clusters of clones joined together
by shared STSs). The resolution and coverage of such a map are determined by a
number of factors, including the density of STSs, the size of the clones, and the
depth of the clone library. Maps that use cloning vectors with smaller insert sizes
have a higher theoretical resolution but require more STSs to achieve coverage of
the same area of the genome. Although it is generally possible to deduce the relative
order of markers on STS content maps, the distances between adjacent markers
cannot be measured with accuracy without further experimentation, such as by re-
striction mapping. However, STS content maps have the advantage of being asso-
ciated with a clone resource that can be used for further studies, including subcloning,
DNA sequencing, or transfection.

Several other techniques in addition to STS content and radiation hybrid map-
ping have also been used to produce physical maps. Clone maps rely on techniques
other than STS content to determine the adjacency of clones. For example, the CEPH
YAC map (see below) used a combination of fingerprinting, inter-Alu product hy-
bridization, and STS content to create a map of overlapping YAC clones. Finger-
printing is commonly used by sequencing centers to assemble and/or verify BAC
and PAC contigs before clones are chosen for sequencing, to select new clones for
sequencing that can extend existing contigs, and to help order genomic sequence
tracts generated in whole-genome sequencing projects (Chumakov et al., 1995). Se-
quencing of large-insert clone ends (STC generation), when applied to a whole-
genome clone library of adequate coverage, is very effective for whole-genome map-
ping when used in combination with fingerprinting of the same library. Deletion and
somatic cell hybrid maps relying on large genomic reorganizations (induced delib-
erately or naturally occurring) to place markers into bins defined by chromosomal
breakpoints have been generated for some human chromosomes (Jensen et al., 1997;
Lewis et al.,, 1995; Roberts et al., 1996; Vollrath et al., 1992). Optical mapping
visualizes and measures the length of single DNA molecules extended and digested
with restriction enzymes by high-resolution microscopy. This technique, although
still in its infancy, has been successfully used to assemble whole chromosome maps
of bacteria and lower eukaryotes and is now being applied to complex genomes
(Aston et al., 1999; Jing et al., 1999; Schwartz et al., 1993).
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Comparative Maps

Comparative mapping is the process of identifying conserved chromosome segments
across different species. Because of the relatively small number of chromosomal
breaks that have occurred during mammalian radiation, the order of genes usually is
preserved over large chromosomal segments between related species. Orthologous
genes (copies of the same genes from different species) can be identified through
DNA sequence homology, and sets of orthologous genes sharing an identical linear
order within a chromosomal region in two or more species are used to identify
conserved segments and ancient chromosomal breakpoints.

Knowledge about which chromosomal segments are shared and how they have
become rearranged over time greatly increases our understanding of the evolution of
different plant and animal lineages. One of the most valuable applications of com-
parative maps is to use an established gene map of one species to predict positions
of orthologous genes in another species. Many animal models exist for diseases
observed in humans. In some cases, it is easier to identify the responsible genes in
an animal model than in humans, and the availability of a good comparative map
can simplify the process of identifying the responsible genes in humans. In other
cases, more might be known about the gene(s) responsible in humans, and the same
comparative map could be used to help identify the gene(s) responsible in the model
species. There are several successful examples of comparative candidate gene map-
ping (O’Brien et al., 1999).

As mapping and sequencing efforts progress in many species, it is becoming
possible to identify smaller homologous chromosome segments, and detailed com-
parative maps are being developed between many different species. Fairly dense
gene-based comparative maps now exist between the human, mouse, and rat genomes
and also between several agriculturally important mammalian species. Sequence- and
protein-based comparative maps are also under development for several lower or-
ganisms for which complete sequence is available (Chapter 15). A comparative map
is typically presented either graphically or in tabular format, with one species des-
ignated as the index species and one or more others as comparison species. Homol-
ogous regions are presented graphically with nonconsecutive segments from the com-
parison species shown aligned with their corresponding segments along the map of
the index species.

Integrated Maps

Map integration provides interconnectivity between mapping data generated from
two or more different experimental techniques. However, achieving accurate and
useful integration is a difficult task. Most of the genomic maps and associated Web
sites discussed in this section provide some measure of integration, ranging from the
approximate cytogenetic coordinates provided in the Généthon GL map to the inter-
associated GL, RH, and physical data provided by the Whitehead Institute (WICGR)
Web site. Several integration projects have created truly integrated maps by placing
genomic elements mapped by differing techniques relative to a single map scale.
The most advanced sources of genomic information provide some level of genomic
cataloguing, where considerable effort is made to collect, organize, and map all
available positional information for a given genome.
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COMPLEXITIES AND PITFALLS OF MAPPING

It is important to realize that the genomic mapping information currently available
is a collection of a large number of individual data sets, each of which has unique
characteristics. The experimental techniques, methods of data collection, annotation,
presentation, and quality of the data differ considerably among these data sets. Al-
though most mapping projects include procedures to detect and eliminate and/or
correct errors, there are invariably some errors that occur, which often result in the
incorrect ordering or labeling of individual markers. Although the error rate is usually
very low (5% or less), a marker misplacement can obviously have a great impact on
a study. A few mapping Web sites are beginning to flag and correct (or at least warn)
users of potential errors, but most errors cannot be easily detected. Successful strat-
egies for minimizing the effects of data error include (1) simultaneously assessing
as many different maps as possible to maximize redundancy (note that ideally *‘dif-
ferent” maps use independently-derived data sets or different techniques); (2) in-
creased emphasis on utilizing integrated maps and genomic catalogues that provide
access to all available genomic information for the region of interest (while closely
monitoring the map resolution and marker placement confidence of the integrated
map); and (3) if possible, experimentally verifying the most critical marker positions
or placements.

In addition to data errors, several other, more subtle complexities are notable.
Foremost is the issue of nomenclature, or the naming of genomic markers and ele-
ments. Many markers have multiple names, and keeping track of all the names is a
major bioinformatics challenge. For example, the polymorphic marker D1S243 has
several assigned names: AFM214yg7, which is actually the name of the DNA clone
from which this polymorphism was identified; SHGC-428 and stSG729, two ex-
amples of genome centers renaming a marker to fit their own nomenclature schemes;
and both GDB:201358 and GDB:133491, which are database identifier numbers used
to track the polymorphism and STS associated with this marker, respectively, in the
Genome Database (GDB). Genomic mapping groups working with a particular
marker often assign an additional name to simplify their own data management, but,
too often, these alternate identifiers are subsequently used as a primary name. Fur-
thermore, many genomic maps display only one or a few names, making comparisons
of maps problematic. Mapping groups and Web sites are beginning to address these
inherent problems, but the difficulty of precisely defining ‘“‘markers,” ‘“‘genes,” and
“genomic elements” adds to the confusion. It is important to distinguish between
groups of names defining different elements. A gene can have several names, and it
can also be associated with one or more EST clusters, polymorphisms, and STSs.
Genes spanning a large genomic stretch can even be represented by several markers
that individually map to different positions. Web sites providing genomic catalogu-
ing, such as LocusLink, UniGene, GDB, GeneCards, and eGenome, list most names
associated with a given genomic element. Nevertheless, collecting, cross-referencing,
and frequently updating one’s own sets of names for markers of interest is also a
good practice (see Chapter 4 for data management using Sequin), as even the ge-
nomic cataloguing sites do not always provide complete nomenclature collections.

Each mapping technique yields its own resolution limits. Cytogenetic banding
potentially orders markers separated by =1-2 Mb, and genetic linkage (GL) and
RH analyses yields long-range resolutions of =0.5—1 Mb, although localized order-
ing can achieve higher resolutions. The confidence level with which markers are
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ordered on statistically based maps is often overlooked, but this is crucial for as-
sessing map quality. For genomes with abundant mapping data such as human or
mouse, the number of markers used for mapping often far exceeds the ability of the
technique to order all markers with high confidence (often, confidence levels of
1,000:1 or lod 3 are used as a cutoff, which usually means that a marker is =1,000:
1 times more likely to be in the given position than in any other). Mappers have
taken two approaches to address this issue. The first is to order all markers in the
best possible linear order, regardless of the confidence for map position of each
marker [examples include GeneMap *99 (GM99) and the Genetic Location Database;
Collins et al., 1996; Deloukas et al., 1998]. Alternatively, the high confidence linear
order of a subset of markers is determined, and the remaining markers are then placed
in high confidence ‘“‘intervals,” or regional positions (such as Généthon, SHGC, and
eGenome; Dib et al., 1996; Stewart et al., 1997; White et al., 1999). The advantage
of the first approach is that resolution is maximized, but it is important to pay
attention to the odds for placement of individual markers, as alternative local orders
are often almost equally likely. Thus, beyond the effective resolving power of a
mapping technique, increased resolution often yields decreased accuracy, and re-
searchers are cautioned to strike a healthy balance between the two.

Each mapping technique also yields very different measures of distance. Cyto-
genetic approaches, with the exception of high-resolution fiber FISH, provide only
rough distance estimates, GL and STS content mapping provide marker orientation
but only relative distances, and RH mapping yields distances roughly proportional
to true physical distance. For GL analysis, unit measurements are in centMiorgans,
with 1 cM equivalent to a 1% chance of recombination between two linked markers.
The conversion factor of 1 cM = 1 Mb is often cited for the human genome but is
overstated, as this is just the average ratio genome-wide, and many chromosomal
regions have recombination hotspots and coldspots in which the cM-to-Mb ratio
varies as much as 10-fold. In general, cytogenetic maps provide subband marker
regionalization but limited localized ordering, GL and STS content maps provide
excellent ordering and limited-to-moderate distance information, and RH maps pro-
vide the best combination of localized ordering and distance estimates.

Finally, there are various levels at which genomic information can be presented.
Single-resource maps such as the Généthon GL maps use a single experimental
technique and analyze a homogeneous set of markers. Strictly comparative maps
make comparisons between two or more different single-dimension maps either
within or between species but without combining data sets for integration. GDB’s
Mapview program can display multiple maps in this fashion (Letovsky et al., 1998).
Integrated maps recalculate or completely integrate multiple data sets to display the
map position of all genomic elements relative to a single scale; GDB’s Comprehen-
sive Maps are an example of such integration (Letovsky et al., 1998). Lastly, genome
cataloguing is a relatively new way to display genomic information, in which many
data sets and/or Web sites are integrated to provide a comprehensive listing and/or
display of all identified genomic elements for a given chromosome or genome. Com-
pletely sequenced genomes such as C. elegans and S. cerevisiae have advanced
cataloguing efforts (see Chapter 15), but catalogues for complex genome organisms
are in the early stages. Examples include the interconnected NCBI databases, MGD,
and eGenome (Blake et al., 2000; Wheeler et al., 2000). Catalogues provide a ‘“‘one-
stop shopping” solution to collecting and analyzing genomic data and are recom-
mended as a maximum-impact means to begin a regional analysis. However, the
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individual data sets provide the highest quality positional information and are ulti-
mately the most useful for region definition and refinement.

DATA REPOSITORIES

There are several valuable and well-developed data repositories that have greatly
facilitated the dissemination of genome mapping resources for humans and other
species. This section covers three of the most comprehensive resources for mapping
in humans: the Genome Database (GDB), the National Center for Biotechnology
Information (NCBI), and the Mouse Genome Database (MGD). More focused re-
sources are mentioned in the Mapping Projects and Associated Resources section of
this chapter.

GDB

The Genome Database (GDB) is the official central repository for genomic mapping
data created by the Human Genome Project (Pearson, 1991). GDB’s central node is
located at the Hospital for Sick Children (Toronto, Ontario, Canada). Members of
the scientific community as well as GDB staff curate data submitted to the GDB.
Currently, GDB comprises descriptions of three types of objects from humans: Ge-
nomic Segments (genes, clones, amplimers, breakpoints, cytogenetic markers, fragile
sites, ESTs, syndromic regions, contigs, and repeats), Maps (including cytogenetic,
GL, RH, STS-content, and integrated), and Variations (primarily relating to poly-
morphisms). In addition, contributing investigator contact information and citations
are also provided. The GDB holds a vast quantity of data submitted by hundreds of
investigators. Therefore, like other large public databases, the data quality is variable.
A more detailed description of the GDB can be found in Talbot and Cuticchia (1994).

GDB provides a full-featured query interface to its database with extensive on-
line help. Several focused query interfaces and predefined reports, such as the Maps
within a Region search and Lists of Genes by Chromosome report, present a more
intuitive entry into GDB. In particular, GDB’s Mapview program provides a graph-
ical interface to the genetic and physical maps available at GDB.

A Simple Search is available on the home page of the GDB Web site. This query
is used when searching for information on a specific genomic segment, such as a
gene or STS (amplimer, in GDB terminology) and can be implemented by entering
the segment name or GDB accession number. Depending on the type of segment
queried and the available data, many different types of segment-specific information
may be returned, such as alternate names (aliases), primer sequences, positions in
various maps, related segments, polymorphism details, contributor contact informa-
tion, citations, and relevant external links.

At the bottom of the GDB home page is a link to Other Search Options. From
the Other Search Options page there are links to three customized search forms
(Markers and Genes within a Region, Maps within a Region, and Genes by Name
or Symbol), sequence-based searches, specific search forms for subclasses of GDB
elements, and precompiled lists of data (Genetic Diseases by Chromosome, Lists of
Genes by Chromosome, and Lists of Genes by Symbol Name).

A particularly useful query is the Maps within a Region search. This search
allows retrieval of all maps stored in GDB that span a defined chromosomal region.
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In a two-step process, the set of maps to be retrieved is first determined, and, from
these, the specific set to be displayed is then selected.

Select the Maps within a Region link to display the search form. To view an
entire chromosome, simply select it from the pop-up menu. However, entire chro-
mosomes may take considerable time to download and display; therefore, it is usually
best to choose a subchromosomal region. To view a chromosomal region, type the
names of two cytogenetic bands or flanking genetic markers into the text fields
labeled From and To. An example query is shown in Figure 6.1. If the flanking
markers used in the query are stored in GDB as more than one type of object, the
next form will request selection of the specific type of element for each marker. For
the example shown in Figure 6.1, it is appropriate to select Amplimer.

The resulting form lists all maps stored in GDB that overlap the selected region.
Given the flanking markers specified above, there are a total of 21 maps. The user
selects which maps to display by marking the respective checkboxes. Note that
GDB’s Comprehensive Map is automatically selected. If a graphical display is re-
quested, the size of the region and the number of maps to be displayed can signifi-
cantly affect the time to fetch and display them. The resulting display will appear
in a separate window showing the selected maps in side-by-side fashion.

While the Mapview display is loading, a new page is shown in the browser
window. If your system is not configured to handle Java properly, a helpful message
will be displayed in the browser window. (Important: Do not close the browser
window behind Mapview. Because of an idiosyncrasy of Java’s security specification,
the applet cannot interact properly with GDB unless the browser window remains
open.) To safely exit the Mapview display, select Exit from Mapview’s File menu.

Mapview has many useful options, which are well described in the online help.
Some maps have more than one tier, each displaying different types of markers, such
as markers positioned with varying confidence thresholds on a linkage or radiation
hybrid map. It is possible to zoom in and out, highlight markers across maps, color
code different tiers, display markers using different aliases, change the relative po-
sition of the displayed maps, and search for specific markers. To retrieve additional
information on a marker from any of the maps, double-click on its name to perform
a Simple Search (as described above). A separate browser window will then display
the GDB entry for the selected marker.

Two recently added GDB tools are GDB BLAST and e-PCR. These are available
from the Other Search Options page and enable users to employ GDB’s many data
resources in their analysis of the emerging human genome sequence. GDB BLAST
returns GDB objects associated with BLAST hits against the public human sequence.
GDB’s e-PCR finds which of its many amplimers are contained within queried DNA
sequences and is thereby a quick means to determine or refine gene or marker lo-
calization. In addition, the GDB has many useful genome resource Web links on its
Resources page.

NCBI

The NCBI has developed many useful resources and tools, several of which are
described throughout this book. Of particular relevance to genome mapping is the
Genomes Division of Entrez. Entrez provides integrated access to several different
types of data for over 600 organisms, including nucleotide sequences, protein struc-
tures and sequences, PubMed/MEDLINE, and genomic mapping information. The
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Figure 6.1. Results of a Maps within a Region GDB query for the region D15468-D15214,
with no limits applied to the types of maps to be retrieved. Twenty-one maps were avail-
able for display. Only the Genethon and Marshfield linkage maps, as well as the Chromo-
some 1 RH map were selected for graphical display. Markers that are shared across maps
are connected by lines.

NCBI Human Genome Map Viewer is a new tool that presents a graphical view of
the available human genome sequence data as well as cytogenetic, genetic, physical,
and radiation hybrid maps. Because the Map Viewer provides displays of the human
genome sequence for the finished contigs, the BAC tiling path of finished and draft
sequence, and the location of genes, STSs, and SNPs on finished and draft sequences,
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it is an especially useful tool for integrating maps and sequence. The only other
organisms for which the Map Viewer is currently available is M. musculus and D.
melanogaster.

The NCBI Map Viewer can simultaneously display up to seven maps that are
selected from a set of 19, including cytogenetic, linkage, RH, physical, and sequence-
based maps. Some of the maps have been previously published, and others are being
computed at NCBI. An extensive set of help pages is available. There are many
different paths to the Map Vieweron the NCBI Web site, as described in the help
pages. The Viewer supports genome-wide or chromosome-specific searches.

A good starting point is the Homo sapiens Genome View page. This is reached
from the NCBI home page by connecting to Human Genome Resources (listed on
the right side), followed by the link to the Map Viewer (listed on the left side). From
the Genome View page, a genome-wide search may be initiated using the search
box at the top left, or a chromosome-specific search may be performed by entering
a chromosome number(s) in the top right search box or by clicking on a chromosome
idiogram. The searchable terms include gene symbol or name and marker name or
alias. The search results include a list of hits for the search term on the available
maps. Clicking on any of the resulting items will bring up a graphical view of the
region surrounding the item on the specific map that was selected. For example, a
genome-wide search for the term CMT* returns 33 hits, representing the loci for
forms of Charcot-Marie-Tooth neuropathy on eight different chromosomes. Selecting
the Genes_seq link for the PMP22 gene (the gene symbol for CMT1A, on chro-
mosome 17) returns the view of the sequence map for the region surrounding this
gene. The Display Settings window can then be used to select simultaneous display
of additional maps (Fig. 6.2).

The second search box at the top right may be used to limit a genome-wide
search to a single chromosome or range of chromosomes. Alternatively, to browse
an entire chromosome, click on the link below each idiogram. Doing so will return
a graphical representation of the chromosome using the default display settings.
Currently, the default display settings select the STS map (shows placement of STSs
using electronic PCR), the GenBank map (shows the BAC tiling path used for se-
quencing), and the contig map (shows the contig map assembled at NCBI from
finished high-throughput genomic sequence) as additional maps to be displayed. To
select a smaller region of interest from the view of the whole chromosome, either
define the range (using base pairs, cytogenetic bands, gene symbols or marker names)
in the main Map Viewer window or in the display settings or click on a region of
interest from the thumbnail view graphic in the sidebar or the map view itself. As
with the GDB map views, until all sequence is complete, alignment of multiple maps
and inference of position from one map to another must be judged cautiously and
should not be overinterpreted (see Complexities and Pitfalls of Mapping section
above).

There are many other tools and databases at NCBI that are useful for gene
mapping projects, including e-PCR, BLAST (Chapter 8), the GeneMap 99 (see
Mapping Projects and Associated Resources), and the LocusLink, OMIM (Chapter
7), dbSTS, dbSNP, dbEST (Chapter 12), and UniGene (Chapter 12) databases. e-
PCR and BLAST can be used to search DNA sequences for the presence of markers
and to confirm and refine map localizations. In addition to EST alignment infor-
mation and DNA sequence, UniGene reports include cytogenetic and RH map lo-
cations. The GeneMap ’99 is a good starting point for finding approximate map
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Figure 6.2. NCBI's Map View of the region surrounding the PMP22 gene. The Généthon,
STS, and Genes__seq maps are displayed with lines connecting markers in common.

positions for EST markers, although additional fine-mapping should be performed to
confirm order in critical regions. LocusLink, OMIM, and UniGene are good starting
points for genome catalog information about genes and gene-based markers.
LocusLink (Pruitt et al., 2000) presents information on official nomenclature, aliases,
sequence accessions, phenotypes, EC numbers, MIM numbers, UniGene clusters,
homology, map locations, and related Web sites. The dbSTS and dbEST databases
themselves play a lesser role in human and mouse gene mapping endeavors as their
relevant information has already been captured by other more detailed resources
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(such as LocusLink, GeneMap ’99, UniGene, MGD, and eGenome) but are currently
the primary source of genomic information for other organisms. The dbSNP database
stores population-specific information on variation in humans, primarily for single
nucleotide repeats but also for other types of polymorphisms. In addition, the NCBI’s
Genomic Biology page provides genomic resource home pages for many other or-
ganisms, including mouse, rat, Drosophila, and zebrafish.

MGI/MGD

The Mouse Genome Initiative Database (MGI) is the primary public mouse genomic
catalogue resource. Located at The Jackson Laboratory, the MGI currently encom-
passes three cross-linked topic-specific databases: the Mouse Genome Database
(MGD), the mouse Gene Expression Database (GXD), and the Mouse Genome Se-
quence project (MGS). The MGD has evolved from a mapping and genetics resource
to include sequence and genome information and details on the functions and roles
of genes and alleles (Blake et al., 2000). MGD includes information on mouse ge-
netic markers and nomenclature, molecular segments (probes, primers, YACs and
MIT primers), phenotypes, comparative mapping data, graphical displays of linkage,
cytogenetic, and physical maps; experimental mapping data, and strain distribution
patterns for recombinant inbred strains (RIs) and cross haplotypes. As of November
2000, there were over 29,500 genetic markers and 11,600 genes in MGD, with 85%
and 70% of these placed onto the mouse genetic map, respectively. Over 4,800 genes
have been matched with their human ortholog and over 1,800 matched with their rat
ortholog.

Genes are easily searched through the Quick Gene Search box on the MGD
home page. Markers and other map elements may also be accessed through several
other search forms. The resulting pages contain summary information such as ele-
ment type, official symbol, name, chromosome, map positions, MGI accession ID,
references, and history. Additional element-specific information may also be dis-
played, including links to outside resources (Fig. 6.3). A thumbnail linkage map of
the region is shown to the right, which can be clicked on for an expanded view.

The MGD contains many different types of maps and mapping data, including
linkage data from 13 different experimental cross panels and the WICGR mouse
physical maps, and cytogenetic band positions are available for some markers. The
MGD also computes a linkage map that integrates markers mapped on the various
panels. A very useful feature is the ability to build customized maps of specific
regions using subsets of available data, incorporating private data, and showing ho-
mology information where available (see Comparative Resources section below). The
MGD is storing radiation hybrid scores for mouse markers, but to date, no RH maps
have been deposited at MGD.

MAPPING PROJECTS AND ASSOCIATED RESOURCES

In addition to the large-scale mapping data repositories outlined in the previous
section, many invaluable and more focused resources also exist. Some of these are
either not appropriate for storage at one of the larger-scale repositories or have never
been deposited in them. These are often linked to specific mapping projects that
primarily use only one or a few different types of markers or mapping approaches.

127



128

GENOMIC MAPPING AND MAPPING DATABASES

= Netscape: MGl 2.4 — Genes, Markers and Phenotypes Query Results (Details) |
File  Edit Yiew Go Communicaior Hela

Adouse Genome Informatics

Main Menu | MG Home | User Support | Help Documents | Submissions | Chr Coram
fers | Molecwlar | Homolegy | Mapping | Expression | Strain/Polymorphism | Refs | AcclD

CQuery Forms

Genes, Markers and Phenotypes

Query Results —— Details

Type: Gene

Symbol: Pmp22

Name: peripheral myelin protein, 22 kDa
Chromosome: 11

cM Position: 34.5

MGI Accession 1D: MG1:97631

Additional Information:

s Mammalian Homology

e Marker Mapping Data (29)

® Phenotype (MLC)

# Phenotypic Alleles (3)

s RFLP/PCR Polymorphism (7)

o GXD Index Data (4)

» Molecular Probes and Segments (31)
® References(57)

Gene Classifications: { You can browse the Gene Ontology (GO Classifications)

Category Classification Term Evidence Reference
Biological Process cell cycle arrest electronic annotation 60000
Biological Process ionic insulation of neurons by glial cells  electronic annotation  1.60000
Cellular Component membrane fraction electronic annotation  J.60000

Other Database Links for this Marker:

Acc ID Links Reference

M32240 (DDBJ, EMBL, GSDB, GenBank) J:42516

$78568 (DDBI, EMBL, GSDB, GenBank) 1:26607 o
| I % oh @ 2]

Figure 6.3. Results of an MGD Quick Gene Search for pmp22.

For most studies requiring the use of genome maps, it remains necessary to obtain
maps or raw data from one or more of these additional resources. By visiting the
resource-specific sites outlined in this section, it is usually possible to view maps in
the form preferred by the originating laboratory, download the raw data, and review
the laboratory protocols used for map construction.

Cytogenetic Resources

Cytogenetic-based methodologies are instrumental in defining inherited and acquired
chromosome abnormalities, and (especially gene-based) chromosomal mapping data
is often expressed in cytogenetic terms. However, because cytogenetic markers are
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not sequence based and the technique is less straightforward and usually more sub-
jective than GL, RH, or physical mapping, there is only a modicum of integration
between chromosomal band assignments and map coordinates derived from other
techniques in humans and very little or none in other species. Thus, it is often difficult
to determine the precise cytogenetic location of a gene or region. Useful human
resources can be divided into displays of primary cytogenetic mapping data, efficient
methods of integrating cytogenetic and other mapping data, and resources pertaining
to specific chromosomal aberrations.

The central repository for human cytogenetic information is GDB, which offers
several ways to query for marker and map information using cytogenetic coordinates
(see above). GDB is a useful resource for cross-referencing cytogenetic positions
with genes or regions of interest. NCBI's LocusLink and UniGene catalogues, as
well as their other integrated mapping resources, are also valuable repositories of
cytogenetic positions. LocusLink and NCBI’s Online Mendelian Inheritance in Man
(OMIM) list cytogenetic positions for all characterized genes and genetic abnormal-
ities, respectively (McKusick, 1998; Pruitt et al., 2000). The National Cancer Institute
(NCI)-sponsored project to identify GL-tagged BAC clones at 1 Mb density through-
out the genome is nearing completion. This important resource, which is commer-
cially available both as clone sets and as individual clones, provides the first complete
integration of cytogenetic band information with other genome maps. At this site,
BACs can be searched for individually by clone name, band position, or contained
STS name, and chromosome sets are also listed. Each clone contains one or more
microsatellite markers and has GL and/or RH mapping coordinates along with a
FISH-determined cytogenetic band assignment. This information can be used to
quickly determine the cytogenetic position of a gene or localized region and to map
a cytogenetic observation such as a tumor-specific chromosomal rearrangement using
the referenced GL and physical mapping reagents.

Three earlier genome-wide efforts to cytogenetically map large numbers of
probes are complementary to the NCI site. The Lawrence Berkeley National Labo-
ratory-University of California, San Francisco, Resource for Molecular Cytogenetics
has mapped large-insert clones containing polymorphic and expressed markers using
FISH to specific bands and also with fractional length (flpter) coordinates, in which
the position of a marker is measured as a percentage of the length of the chromo-
some’s karyotype. Similarly, the Genetics Institute at the University of Bari, Italy,
and the Max Planck Institute for Molecular Genetics have independently localized
large numbers of clones, mostly YACs containing GL-mapped microsatellite markers,
onto chromosome bands by FISH. All three resources have also integrated the
mapped probes relative to existing GL and/or RH maps.

Many data repositories and groups creating integrated genome maps list cyto-
genetic localizations for mapped genomic elements. These include GDB, NCBI, the
Unified Database (UDB), the Genetic Location Database (LDB), and eGenome, all
of which infer approximate band assignments to many or all markers in their data-
bases. These assignments rely on determination of the approximate boundaries of
each band using subsets of their marker sets for which accurate cytogenetic mapping
data are available.

The NCI’'s Cancer Chromosome Aberration Project (CCAP; Wheeler et al.,
2000), Infobiogen (Wheeler et al., 2000), the Southeastern Regional Genetics Group
(SERGQG), and the Coriell Cell Repositories all have Web sites that display cytoge-
netic maps or descriptions of characterized chromosomal rearrangements. These sites
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are useful resources for determining whether a specific genomic region is frequently
disrupted in a particular disease or malignancy and for finding chromosomal cell
lines and reagents for regional mapping. However, most of these rearrangements
have only been mapped at the cytogenetic level.

Nonhuman resources are primarily limited to displays or simple integrations of
chromosome idiograms. ArkDB is an advanced resource for displaying chromosomes
of many amniotes; MGD incorporates mouse chromosome band assignments into
queries of its database; and the Animal Genome Database has clickable chromosome
idiograms for several mammalian genomes (Wada and Yasue, 1996). A recent work
linking the mouse genetic and cytogenetic maps consists of 157 BAC clones dis-
tributed genome-wide (Korenberg et al., 1999) and an associated Web site is available
for this resource at the Cedars-Sinai Medical Center.

Genetic Linkage Map Resources

Even with the ‘““sequence era’ approaching rapidly, linkage maps remain one of the
most valuable and widely used genome mapping resources. Linkage maps are the
starting point for many disease-gene mapping projects and have served as the back-
bone of many physical mapping efforts. Nearly all human linkage maps are based
on genotypes from the standard CEPH reference pedigrees. There are three recent
sets of genome-wide GL maps currently in use, all of which provide high-resolution,
largely accurate, and convenient mapping information. These maps contain primarily
the conveniently genotyped PCR-based microsatellite markers, use genotypes for
only 8—15 of the 65 available CEPH pedigrees, and contain few, if any, gene-based
or cytogenetically mapped markers. Many chromosome-specific linkage maps have
also been constructed, many of which use a larger set of CEPH pedigrees and include
hybridization- and gene-based markers. Over 11,000 markers have been genotyped
in the CEPH pedigrees, and these genotypes have been deposited into the CEPH
genotype database and are publicly available.

The first of the three genome-wide maps was produced by the Cooperative Hu-
man Linkage Center (CHLC; Murray et al., 1994). Last updated in 1997, the CHLC
has identified, genotyped, and/or mapped over 3,300 microsatellite repeat markers.
The CHLC Web site currently holds many linkage maps, including maps comprised
solely of CHLC-derived markers and maps combining CHLC markers with those
from other sources, including most markers in CEPHdb. CHLC markers can be
recognized by unique identifiers that contain the nucleotide code for the tri- or te-
tranucleotide repeat units. For example, CHLC.GATA49A06 (D1S1608) contains a
repeat unit of GATA, whereas CHLC.ATA28C07 (D1S1630) contains an ATA repeat.
There are over 10,000 markers on the various linkage maps at CHLC, and most
CHLC markers were genotyped in 15 CEPH pedigrees. The highest resolution CHLC
maps have an average map distance of 1-2 cM between markers. Some of the maps
contain markers in well-supported unique positions along with other markers placed
into intervals.

Another set of genome-wide linkage maps was produced in 1996 by the group
at Généthon (Dib et al., 1996). This group has identified and genotyped over 7,800
dinucleotide repeat markers and has produced maps containing only Généthon mark-
ers. These markers also have unique identifiers; each marker name has the symbols
“AFM” at the beginning of the name. The Généthon map contains 5,264 genotyped
in 8—20 CEPH pedigrees. These markers have been placed into 2,032 well-supported
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map positions, with an average map resolution of 2.2 cM. Because of homogeneity
of their marker and linkage data and the RH and YAC-based mapping efforts at
Généthon that incorporate many of their polymorphic markers, the Généthon map
has become the most widely utilized human linkage map.

The third and most recent set of human maps was produced at the Center for
Medical Genetics at the Marshfield Medical Research Foundation (Broman et al.,
1998). This group has identified over 300 dinucleotide repeats and has constructed
high-density maps using over 8,000 markers. Like the CHLC maps, the Marshfield
maps include their own markers as well as others, such as markers from CHLC and
Généthon. These maps have an average resolution of 2.3 ¢cM per map interval. Mark-
ers developed at the Marshfield Foundation have an MFD identifier at the beginning
of their names. The authors caution on their Web site that because only eight of the
CEPH families were used for the map construction, the orders of some of the markers
are not well determined. The Marshfield Web site provides a useful utility for dis-
playing custom maps that contain user-specified subsets of markers.

Two additional linkage maps have been developed exclusively for use in per-
forming efficient large-scale and/or genome-wide genotyping. The ABI PRISM link-
age mapping sets are composed of dinucleotide repeat markers derived from the
Généthon linkage map. The ABI marker sets are available at three different map
resolutions (20, 10, and 5 cM), containing 811, 400, and 218 markers, respectively.
The Center for Inherited Disease Research (CIDR), a joint program sponsored by
The Johns Hopkins University and the National Institutes of Health, provides a gen-
otyping service that uses 392 highly polymorphic tri- and tetranucleotide repeat
markers spaced at an average resolution of 9 cM. The CIDR map is derived from
the Weber v.9 marker set, with improved reverse primers and some additional mark-
ers added to fill gaps.

Although each of these maps is extremely valuable, it can be very difficult to
determine marker order and intermarker distance between markers that are not all
represented on the same linkage map. The MAP-O-MAT Web site at Rutgers Uni-
versity is a marker-based linkage map server that provides several map-specific que-
ries. The server uses genotypes for over 12,000 markers (obtained from the CEPH
database and from the Marshfield Foundation) and the CRI-MAP computer program
to estimate map distances, perform two-point analyses, and assess statistical support
for order for user-specified maps (Matise and Gitlin, 1999). Thus, rather than at-
tempting to integrate markers from multiple maps by rough interpolation, likelihood
analyses can be easily performed on any subset of markers from the CEPH database.

High-resolution linkage maps have also been constructed for many other species.
These maps are often the most well-developed resource for animal species’ whose
genome projects are in early stages. The mouse and rat both have multiple genome-
wide linkage maps (see MGD and the Rat Genome Database); other species with
well-developed linkage maps include zebrafish, cat, dog, cow, pig, horse, sheep, goat,
and chicken (O’Brien et al., 1999).

Radiation Hybrid Map Resources

Radiation hybrid maps provide an intermediate level of resolution between linkage
and physical maps. Therefore, they are helpful for sequence alignment and will aid
in completion of the human genome sequencing project. Three human whole-genome
panels have been prepared with different levels of X-irradiation and are available for
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purchase from Research Genetics. Three high-resolution genome-wide maps have
been constructed using these panels, each primarily utilizing EST markers. Mapping
servers for each of the three human RH panels are available on-line to allow users
to place their own markers on these maps. RH score data are deposited to, and
publicly available from, The Radiation Hybrid Database (RHdb). Although this sec-
tion covers RH mapping in humans, many RH mapping efforts are also underway
in other species. More information regarding RH resources in all species are available
at The Radiation Hybrid Mapping Information Web site.

In general, lower-resolution panels are most useful for more widely spaced mark-
ers over longer chromosomal regions, whereas higher-resolution panels are best for
localizing very densely spaced markers over small regions. The lowest-resolution
human RH panel is the Genebridge4 (GB4) panel (Gyapay et al., 1996). This panel
contains 93 hybrids that were exposed to 3000 rads of irradiation. The maximum
map resolution attainable by GB4 is 800—1,200 kb. An intermediate level panel was
produced at the Stanford Human Genome Center (Stewart et al., 1997). The Stanford
Generation 3 (G3) panel contains 83 hybrids exposed to 10,000 rads of irradiation.
This panel can localize markers as close as 300—600 kb apart. The highest resolution
panel (““The Next Generation,” or TNG) was also developed at Stanford (Beasley et
al., 1997). The TNG panel has 90 hybrids exposed to 50,000 rads of irradiation and
can localize markers as close as 50—100 kb.

The Whitehead Institute/MIT Center for Genome Research constructed a map
with approximately 6,000 markers using the GB4 panel (Hudson et al., 1995). Frame-
work markers on this map were localized with odds =300:1, yielding a resolution
of approximately 2.3 Mb between framework markers. Additional markers are lo-
calized to broader map intervals. A mapping server is provided for placing markers
(scored in the GB4 panel) relative to the MIT maps.

The Stanford group has constructed a genome-wide map using the G3 RH panel
(Stewart et al., 1997). This map contains 10,478 markers with an average resolution
of 500 kb. Markers localized with odds = 1,000:1 are used to define ‘‘high-confidence
bins,” and additional markers are placed into these bins with lower odds. A mapping
server is provided for placing markers scored in the G3 panel onto the SHGC G3
maps.

A fourth RH map has been constructed using both the G3 and GB4 panels. This
combined map, the Transcript Map of the Human Genome (GeneMap ’99; Fig. 6.4),
was produced by the RH Consortium, an international collaboration between several
groups (Deloukas et al., 1998). This map contains over 30,000 ESTs localized against
a common framework of approximately 1,100 polymorphic Généthon markers. The
markers were localized to the framework using the GB4 RH panel, the G3 panel, or
both. The map includes the majority of human genes with known function. Most
markers on the map represent transcribed sequences with unknown function. The
order of the framework markers is well supported, but most ESTs are mapped relative
to the framework with odds <1,000:1. The majority of markers on the GeneMap
have a lod score <2.0, and many are <1.0. Such markers are localized with relatively
low support for local order, and their map positions should be confirmed by other
means if critical. A mapping server for placing markers on GeneMap ’99 is available
at the Sanger Centre.

The Radiation Hybrid Database (RHdDb) is the central repository for all RH data.
It is maintained at the European Bioinformatics Institute (EBI) in Cambridge, UK
(Rodriguez-Tome and Lijnzaad, 2000). RHdb is a sophisticated Web- and FTP-based



MAPPING PROJECTS AND ASSOCIATED RESOURCES

ENEEESHEGMOTTENrZ2 1 s s il e ] o

A NEW GENE MAP OF THE HUMAN GENOME U
The international KM Mapping € onsortium GEHEMa.p 99

Chromosomes: 1 23456789 10111213141516171819202122X
Search for: |

Chromosome 22; pTEL-D225420

RHMap  Genelic Gene eogram

GE4 a3 Map Denshy 5

The interval shown is on the GB4 map
See also: equivalent interval on G3 map

About This Intarval
Top of interval: chr22_pTEL (0.0 cM)

Bottom of interval: D225420 (0.0 cM)
Genetic size of bin: 0c¢M
Physical size of bin: 15 cRame

®* TELOMERE :

000 P>300 T52917 EST |

1.04 FPO.19 5t5G22362 ESTs

1.15 P0.16 ADD5ST29 BCR breakpoint cluster region

L50 P=3.00 R41599 COMT  catechol-O-methyltransferase

263 POOT SGC31622 SLC20A3 solute carrier family 20 (mitochondrial citr..

353 P>300 sts-T79756 ESTs

454 PO.74 WI-22519 ARVCF  armadillo repeat gene deletes in velocardiof..

695 P160 WIAF-843 ESTs, Moderately similar to (defline not a..
__P184 sis—WEST47 ESTs 3 S

Figure 6.4. GeneMap '99. Example segment of The Human Gene Map, showing the first
map interval on human chromosome 22qg. Although the figure indicates that the map
begins at a telomere, on this acrocentric chromosome, it actually begins near the centro-
mere. The lower section of the figure contains 6 columns describing the elements mapped
to this interval: column 1 gives cM linkage map positions for the polymorphic markers
(none shown here); column 2 shows the computed cR position on either the GB4 or G3
portion of the GeneMap; column 3 contains either an F (for framework markers), or p
followed by a number. This value represents the difference in statistical likelihood (lod
score) for the given map position versus the next most likely position. A lod score of 3 is
equivalent to odds of 1000:1 in favor of the reported marker position, 2 is equivalent to
odds of 100:1, and a lod score of 1 represents odds of 10:1. Columns 4, 5, and 6 provide
marker and gene names (if known).
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searchable relational database that stores RH score data and RH maps. Data sub-
mission and retrieval are completely open to the public. Data are available in multiple
formats or as flatfiles. Release 18.0 (September 2000) contained over 126,000 RH
entries for 100,000 different STSs scored on 15 RH panels in 5 different species, as
well as 91 RH maps.

STS Content Maps and Resources

Many physical mapping techniques have been used to order genomic segments for
regional mammalian genome mapping projects. However, only RH and STS content/
large-insert clone mapping methods have yielded the high throughput and automation
necessary for whole-genome analysis to date, although advances in sequencing tech-
nology and capacity have recently made sequence-based mapping feasible. Two land-
mark achievements by the CEPH/Généthon and WICGR groups have mapped the
entire human genome in YACs. The most comprehensive human physical mapping
project is the collection of overlapping BAC and PAC clones being identified for
the human DNA sequencing project, along with the now complete draft sequence of
the human genome. This information is being generated by many different labs, and
informatics tools to utilize the data are rapidly evolving.

The WICGR physical map is STS content based and contains more than 10,000
markers for which YAC clones have been identified, thus providing an average
resolution of approximately 200 kb (Hudson et al., 1995). This map has been inte-
grated with the Généthon GL and the WICGR RH maps. Together, the integration
provides STS coverage of 150 kb, and approximately half the markers are expressed
sequences also placed on GM99. The map was generated primarily by screening the
CEPH MegaYAC library with primers specific for each marker and then by assem-
bling the results by STS content analysis into sets of YAC contigs. Contigs are
separately divided into ‘“‘single-linked” and ‘‘double-linked,” depending on the min-
imum number of YACs (one or two) required to simultaneously link markers within
a contig. Predictably, the double-linked contigs are shorter and much more reliable
than the single-linked ones, largely because of the high chimeric rate of the
MegaYAC library. Thus, some skill is required for proper interpretation of the YAC-
based data.

The WICGR Human Physical Mapping Project Home Page provides links to
downloadable (but large) GIFs of the maps, a number of ways to search the maps,
and access to the raw data. Maps can be searched by entering or selecting a marker
name, keyword, YAC, or YAC contig. Text-based displays of markers list marker-
specific information, YACs containing the marker, and details of the associated con-
tig. Contig displays summarize the markers contained within them, along with their
coordinates on the GL and RH maps, which is a very useful feature for assessing
contig integrity. Details of which YACs contain which markers and the nature and
source of each STS/YAC hit are also shown. Clickable STS content maps are also
provided from the homepage, and users have the option of viewing the content map
alone or integrated with the GL and RH maps. Although there are numerous conflicts
between the GL, RH, and STS content maps that often require clarification with
other techniques, this resource is very informative once its complexities and limi-
tations are understood, especially where BAC/PAC/sequence coverage is not com-
plete and in linking together BAC/PAC contigs.
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The CEPH/Généthon YAC project is a similar resource to the WICGR project,
also centered around screening of the CEPH MegaYAC library with a large set of
STSs (Chumakov et al., 1995). Much of the CEPH YAC screening results have been
incorporated into the WICGR data (those YAC/STS hits marked as C). However, the
CEPH data includes YAC fingerprinting, hybridization of YACs to inter-Alu PCR
products, and FISH localizations as complementary methods to confirm contig hold-
ings. As with WICGR, these data suffer from the high YAC chimerism rate; long-
range contig builds should be interpreted with caution, and the data are best used
only as a supplement to other genomic data. The CEPH YAC Web site includes a
rudimentary text search engine for STSs and YACs that is integrated with the Gé-
néthon GL map, and the entire data set can be downloaded and viewed using the
associated QUICKMAP application (Sun OS only; Chumakov et al., 1995).

Much of the human draft sequence was determined from BAC libraries that have
been whole-scale DNA fingerprinted and end sequenced. To date, over 346,000
clones have been fingerprinted by Washington University Genome Sequencing Cen-
ter (WUGSC), and the clone coverage is sufficient to assemble large contigs spanning
almost the entire human euchromatin. The fingerprinting data can be searched by
clone name at the WUGSC Web site and provides a list of clones overlapping the
input clone, along with a probability score for the likelihood of each overlap. Alter-
natively, users can download the clone database and analyze the raw data using the
Unix platform software tools IMAGE (for fingerprint data) and FPC (for contig
assembly), which are available from the Sanger Centre.

In parallel with the BAC fingerprinting, a joint project by The Institute for
Genome Research (TIGR) and the University of Washington High-Throughput Se-
quencing Center (UWHTSC) has determined the insert-end sequences (STCs) of the
WUGSC-fingerprinted clones (743,000 sequences). These data can be searched by
entering a DNA sequence at the UWHTSC site or by entering a clone name at the
TIGR site. Together with the fingerprinting data, this is a convenient way to build
and analyze maps in silico. The fingerprinting and STC data have been widely used
for draft sequence ordering by the human sequencing centers, and the BAC/PAC
contigs displayed by the NCBI Map Viewer are largely assembled from these data.

Many human single-chromosome or regional physical maps are also available.
Because other complex genome mapping projects are less well developed, the
WICGR mouse YAC mapping project is the only whole-genome nonhuman physical
map available. This map is arranged almost identically to its human counterpart and
consists of 10,000 STSs screened against a mouse YAC library (Nusbaum et al.,
1999). However, whole-genome mouse fingerprinting and STC generation projects
similar to their human counterparts are currently in production by TIGR/UWHTSC
and the British Columbia Genome Sequence Centre (BCGSC), respectively.

DNA Sequence

As mentioned above, the existing human and forthcoming mouse draft genomic
sequences are excellent sources for confirming mapping information, positioning and
orienting localized markers, and bottom-up mapping of interesting genomic regions.
NCBI tools like BLAST (Chapter 8) can be very powerful in finding marker/se-
quence links. NCBI’s LocusLink lists all homologous sequences, including genomic

sequences, for each known human gene (genomic sequences are type “g” on the
LocusLink Web site; Maglott et al., 2000). e-PCR results showing all sequences
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containing a specific marker are available at the GM99, dbSTS, GDB, and eGenome
Web sites, where each sequence and the exact base pair position of the marker in
the sequence are listed. Large sequence contigs can also be viewed schematically by
NCBTI’s Entrez contig viewer and the Oakridge National Laboratory’s Genome Chan-
nel web tool (Wheeler et al., 2000).

As the mammalian sequencing projects progress, a ‘‘sequence first”” approach to
mapping becomes more feasible. As an example, a researcher can go to the NCBI’s
human genome sequencing page and click on the idiogram of the chromosome of
interest or on the chromosome number at the top of the page. Clicking on the idi-
ogram shows an expanded idiogram graphically depicting all sequence contigs rel-
ative to the chromosome. Clicking on the chromosome number instead displays a
list of all sequence contigs listed in order by cytogenetic and RH-extrapolated po-
sitions. These contigs can then be further viewed for clone, sequence, and marker
content, and links to the relevant GenBank and dbSTS records are provided.

Integrated Maps and Genomic Cataloguing

GDB’s Comprehensive Maps provide an estimated position of all genes, markers,
and clones in GDB on a megabase scale. This estimate is generated by sequential
pairwise comparison of shared marker positions between all publicly available
genome-wide maps. This results in a consensus linear order of markers. At the GDB
Web site, the Web page for each genomic element lists one or more maps on which
the element has been placed, with the estimated Mb position of the marker on each
map:

Element Chromosome Map Coordinate Units EST MB +/—

D1S228 1 GeneMap ’99 782.0000 cR 32.2 0.0

This example shows that marker D1S228 has been placed 782 cR from the 1p
telomere on GM99, and this calculates to 32.2 Mb from the telomere with the GDB
mapping algorithm. Well-mapped markers such as the Généthon microsatellites gen-
erally have more reliable calculated positions than those that are mapped only once
and/or by low-resolution techniques such as standard karyotype-based FISH. For
chromosomes with complete DNA sequence available, the Mb estimates are very
precise.

LDB and UDB are two additional sites that infer physical positions of a large,
heterogeneous set of markers from existing maps using algorithms analogous to
GDB’s. Both Web sites have query pages where a map region can be selected by
Mb coordinates, cytogenetic band, or specific marker names. The query results show
a text-based list of all markers in the region ordered by their most likely positions,
along with an estimated physical distance in Mb from the p telomere. LDB also
displays the type of mapping technique(s) used to determine the comprehensive
position, the position of the marker in each underlying single-dimension map, and
appropriate references. An added feature of the UDB site is its provision of marker-
specific links to other genomic databases. At present, there are no graphical depic-
tions for either map.
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Physical map positions derived from the computationally based algorithms used
by GDB, LDB, and UDB are reliant on the accuracy and integrity of the underlying
maps used to determine the positions. Therefore, these estimates serve better as initial
localization guides and as supportive ordering information rather than as a primary
ordering mechanism. For instance, a researcher defining a disease locus to a chro-
mosome band or between two flanking markers can utilize these databases to quickly
collect virtually all mapped elements in the defined region, and the inferred physical
positions serve as an approximate order of the markers. This information would then
be supplanted by more precise ordering information present in single-dimension
maps and/or from the researcher’s own experimental data.

The eGenome project uses a slightly different approach for creating integrated
maps of the human genome (White et al., 1999). All data from RHdb are used to
generate an RH framework map of each chromosome by a process that maximizes
the number of markers ordered with high confidence (1,000:1 odds). This extended,
high-resolution RH framework is then used as the central map scale from which the
high-confidence intervals for additional RH and GL markers are positioned. As with
GDB, the absolute base pair positions of all markers are calculated for chromosomes
that have been fully sequenced. eGenome also integrates UniGene EST clusters,
large-insert clones, and DNA sequences associated with mapped markers, and it also
infers cytogenetic positions for all markers. The eGenome search page allows que-
rying by marker name or GenBank accession ID or by defining a region with cy-
togenetic band or flanking marker coordinates. The marker displays include the RH
and GL (if applicable) positions, large-insert clones containing the marker, cytoge-
netic position, and representative DNA sequences and UniGene clusters. Advantages
of eGenome include the ability to view regions graphically using GDB’s Mapview,
exhaustive cataloguing of marker names, and an extensive collection of marker-
specific hypertext links to related database sites. eGenome’s maps are more conser-
vative than GDB, LDB, and UDB as they show only the high-confidence locations
of markers (often quite large intervals). Researchers determining a regional order de
novo would be best advised to use a combination of these integrated resources for
initial data collection and ordering.

Because of the large number of primary data sources available for human genome
mapping, ensuring that the data collected for a specific region of interest are both
current and all-inclusive is a significant task. Genomic catalogues help in this regard,
both to provide a single initial source containing most of the publicly available ge-
nomic information for a region and to make the task of monitoring new information
easier. Human genomic catalogues include the NCBI, GDB, and eGenome Web sites.
NCBTI’s wide array of genomic data sets and analysis tools are extremely well inte-
grated, allowing a researcher to easily transition between marker, sequence, gene, and
functional information. GDB’s concentration on mapped genomic elements makes it
the most extensive source of positional information, and its inclusion of most genomic
maps provides a useful mechanism to collect information about a defined region.
eGenome also has powerful “query-by-position” tools to allow rapid collection of
regional information. No existing database is capable of effectively organizing and
disseminating all available human genomic information. However, the eGenome,
GDB, and NCBI Web sites faithfully serve as genomic Web portals by providing
hyperlinks to the majority of data available for a given genomic locus.

WICGR’s mouse mapping project and the University of Wisconsin’s Rat Ge-
nome Database (RGD; Steen et al., 1999) have aligned the GL and RH maps for the
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respective species in a comparative manner. MGD’s function as a central repository
for mouse genomic information makes it useful as a mouse genomic catalogue, and,
increasingly, RGD can be utilized as a rat catalogue. Unfortunately, other complex
species’ genome projects have not yet progressed to the point of offering true inte-
grated maps or catalogues.

Comparative Resources

Comparative maps provide extremely valuable tools for studying the evolution and
relatedness of genes between species and finding disease genes through position-
based orthology. There are several multispecies comparative mapping resources
available that include various combinations of most animal species for which linkage
maps are available. In addition, there are also many sequence-based comparative
analysis resources (Chapter 15). Each resource has different coverage and features.
Presently, it is necessary to search multiple resources, as no single site contains all
of the currently available homology information. Only the most notable resources
will be described here.

A good starting point for homology information is NCBI’s LocusLink database.
The LocusLink reports include links to HomoloGene, a resource of curated and
computed cross-species gene homologies (Zhang et al.,, 2000). Currently,
HomoloGene contains human, mouse, rat, and zebrafish homology data. For exam-
ple, a LocusLink search of all organisms for the gene PMP22 (peripheral myelin
protein) returns three entries, one each for human, mouse, and rat. At the top of the
human PMP22 page is a link to HOMOL (HomoloGene). HomoloGene lists six
homologous elements, including the rat and mouse Pmp22 genes, as well as addi-
tional mouse UniGene cluster and a weakly similar zebrafish UniGene cluster. The
availability of both curated and computed homology makes this a unique resource.
However, the lack of integrated corresponding homology maps is a disadvantage.

The MGD does provide homology maps that simplify the task of studying con-
served chromosome segments. Homologies are taken from the reported literature for
mouse, human, rat, and 17 other species. Homology information can be obtained in
one of three manners: searching for genes with homology information, building a
comparative linkage map, or viewing an Oxford Grid. The simple search returns
detailed information about homologous genes in other species, including map posi-
tions and codes for how the homology was identified, links to the relevant references,
and links for viewing comparative maps of the surrounding regions in any two
species. For example, a homology search for the Pmp22 gene returns a table listing
homologous genes in cattle, dog, human, mouse, and rat. Figure 6.5 shows the
mouse-human comparative map for the region surrounding Pmp22 in the mouse. A
comparative map can also be obtained by using the linkage map-building tool to
specify a region of the mouse as the index map and to select a second, comparison,
species. The resulting display is similar to that shown in Figure 6.5. An Oxford Grid
can also be used to view a genome-wide matrix in which the number of gene ho-
mologies between each pair of chromosomes between two species is shown. This
view is currently available for seven species. Further details on the gene homologies
can be obtained via the links for each chromosome pair shown on the grid. The
map-viewing feature of MGD is quite useful; however, the positions of homologous
nonmouse genes are only cytogenetic, so confirmation of relative marker order within
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Figure 6.5. MGD mouse-human comparative map of the region surrounding the mouse
Pmp22 gene. Pmp22 is on mouse chromosome 11 at the position 34.5 cM on the mouse
linkage map. As shown by the human genes displayed on the right, a segment of human
chromosome 17 is homologous to this mouse region.

small regions is not possible. It is also possible to view MGD homology information
using GDB (Gatewood and Cottingham, 2000).

In silico mapping is proving to be a very valuable tool for comparative mapping.
The Comparative Mapping by Annotation and Sequence Similarity (COMPASS) ap-
proach (Ma et al., 1998) has been used by researchers studying the cattle genome
to construct cattle-human comparative maps with 638 identified human orthologs
(Band et al., 2000). Automated comparison of cattle and human DNA sequences,
along with the available human mapping information, facilitated localization predic-
tions for tens of thousands of unmapped cattle ESTs. The COMPASS approach has
been shown to have 95% accuracy. The Bovine Genome Database displays the gene-
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based comparative maps, which also integrate mouse homologies. A similar approach
is being used at the Bioinformatics Research Center at the Medical College of Wis-
consin. Here, human, rat, and mouse radiation hybrid maps are coupled with theo-
retical gene assemblies based on EST and cDNA data (such as the UniGene set at
NCBI) for all three species and provide the fundamental resources allowing for the
creation of iteratively built comparative maps (Tonellato et al., 1999). Homologies
with uniformly mapped ESTs form the anchor points for the comparative maps. This
work has, so far, identified 8,036 rat-human, 13,720 rat-mouse, and 9,745 mouse-
human UniGene homologies, most mapped on one or all of the organisms. The
creation of these comparative maps is an iterative exercise that is repeated as the
radiation hybrid maps, ESTs, and UniGene rebuilds are developed. In addition, the
algorithm predicts the placement of unmapped assemblies relative to the anchor
information, providing a powerful environment for ‘““‘virtual mapping” before radia-
tion hybrid or other wet-lab methods are used to confirm the predictions.

Another project utilizing electronic mapping has developed a high-resolution
human/mouse comparative map for human chromosome 7. Recent efforts have
greatly increased the number of identified gene homologies and have facilitated the
construction of sequence-ready BAC-based physical maps of the corresponding
mouse regions (Thomas et al., 2000).

An additional notable resource details homology relationships between human,
mouse, and rat. Derived from a high-resolution RH maps, homologies for over 500
genes have been identified and are available in tabular format at a user-friendly Web
site (Watanabe et al., 1999).

Single-Chromosome and Regional Map Resources

Although whole-genome mapping resources are convenient for initial collection and
characterization of a region of interest, data generated for only a single chromosome
or a subchromosomal region are often important for fine mapping. In many cases,
these regional maps contain more detailed, better integrated, and higher resolution
data than the whole-genome maps can provide. There are numerous such data sets,
databases, and maps available for each human chromosome, although little regional
information is yet available on-line for other complex genomes. Most published
human chromosome maps are listed and can be viewed at GDB’s Web site (see
above).

Another excellent resource is the set of human chromosome-specific Web sites
that have been created by various groups. Recently, the Human Genome Organization
(HUGO) has developed individual human chromosome Web pages, each of which
is maintained by the corresponding HUGO chromosome committees. Each page has
links to chromosome-specific information from a variety of mapping sources, most
of them being chromosome-specific subsets of data derived from whole-genome re-
sources (such as the chromosome 7 GL map from Généthon). At the top of most
HUGO chromosome pages are links to other chromosome pages designed by groups
mapping the specific chromosome. These sites vary widely in their utility and con-
tent; some of the most useful are briefly mentioned below. The sites offer a range
of resources, including chromosome- and/or region-specific GL, RH, cytogenetic,
and physical maps; DNA sequence data and sequencing progress, single chromosome
databases and catalogues of markers, clones, and genomic elements; and links to
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related data and resources at other sites, single chromosome workshop reports, and
chromosome E-mail lists and discussion forums.

The major genome centers often include detailed mapping and sequence anno-
tation for particular chromosomes at their sites. The Sanger Centre and the WUGSC
have two of the most advanced collections of chromosome-specific genomic data,
informatics tools, and resources. Sanger has collected and generated most available
mapping data and reagents for human chromosomes 1, 6, 9, 10, 13, 20, 22, and X.
These data are stored and displayed using ACeDB, which can be utilized through a
Web interface (WEBACE) at the Sanger Web site or, alternatively, downloaded onto
a local machine (Unix OS). ACeDB is an object-oriented database that provides a
convenient, relational organizational scheme for storing and managing genomic data,
as well as for viewing the information in both text-based and graphical formats.
ACeDB is the database of choice for most researchers tackling large genomic map-
ping projects. WUGSC has recently implemented single-chromosome ACeDB se-
quence and mapping databases for most human chromosomes, each of which has a
Web interface.

The Human Chromosome 1 Web site is an example of a community-based ap-
proach to genomic research. This site includes a repository for chromosome data
generated by several labs, an extensive list of hyperlinks to chromosome 1 data, an
E-mail list and discussion forum, a listing of chromosome 1 researchers and their
interests, and several workshop reports. The University of Texas at San Antonio’s
chromosome 3 site contains a database of large-insert clones and markers along with
GL, RH, cytogenetic, and comparative maps. The University of California-Irvine has
an on-line chromosome 5 ACeDB database, whereas the Joint Genome Institute (JGI)
maintains chromosome 5 large-insert clone maps and some external Web links at
their site. The University of Toronto chromosome 7 Web site includes a searchable
comprehensive chromosome 7 database containing markers, clones, and cytogenetic
information; this site also has a long list of chromosome links. Also, the National
Human Genome Research Institute’s chromosome 7 Web site contains a YAC/STS
map, a list of ESTs, and integration with chromosome 7 sequence files. The Uni-
versity College London maintains a good comprehensive resource of chromosome 9
genomic links, an E-mail group, workshop reports, and a searchable chromosome 9
database. Genome Therapeutics Corporation has developed an inclusive Web site for
chromosome 10. This site has both GL/physical and integrated sequence-based maps,
links to related data, and workshop reports.

Imperial College maintains a searchable chromosome 11 database at their chro-
mosome 11 Web site, whereas the chromosome 16 Web site at JGI contains restric-
tion-mapped BAC and cosmid contigs and determined sequence, along with a list of
chromosome 16 hyperlinks. A similar JGI resource for chromosome 19 includes a
completely integrated physical map with sequence links and a list of external re-
sources. The University of Colorado, the RIKEN Genomic Sciences Center, and the
Max Planck Institute for Molecular Genetics (MPIMG) have an interconnected set
of resources that together integrate genomic clones, markers, and sequence for the
completely sequenced chromosome 21. The Sanger Centre and the LDB have com-
prehensive resources for the viewing and analysis of chromosome 22. It is expected
that additional resources for all completely sequenced chromosomes will be available
soon. The resources for the X chromosome are most impressive. The MPIMG has
established a complete genomic catalogue of this chromosome that features integra-
tion of genomic mapping and sequence data derived from many sources and ex-
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perimental techniques. These data can be viewed graphically with the powerful on-
line Java application derBrowser. Finally, the sequenced and well-characterized
mitochondrial genome is well displayed at Emory University, where a highly ad-
vanced catalogue encompassing both genomic and functional information has been
established.

PRACTICAL USES OF MAPPING RESOURCES

Potential applications of genomic data are numerous and, to a certain extent, depend
on the creativity and imagination of the researcher. However, most researchers utilize
genomic information in one of three ways: to find out what genomic elements—
usually transcribed elements—are contained within a genomic region, to determine
the order of defined elements within a region, or to determine the chromosomal
position of a particular element. Each of these goals can be accomplished by various
means, and the probability of efficient success is often enhanced by familiarity with
many of the resources discussed in this chapter. It is prudent to follow a logical
course when using genomic data. During the initial data acquisition step, in which
genomic data are either generated experimentally or retrieved from publicly available
data sources, simultaneous evaluation of multiple data sets will ensure both higher
resolution and greater confidence while increasing the likelihood that the genomic
elements of interest are represented. Second, the interrelationships and limitations of
the data sets must be sufficiently understood, as it is easy to overinterpret or under-
represent the data. Finally, it is important to verify critical assignments independently,
especially when using mapping data that are not ordered with high confidence. Be-
low, we give some brief suggestions on how to approach specific map-related tasks,
but many modifications or alternative approaches are also viable. The section is
organized in a manner similar to a positional cloning project, starting with definition
of the region’s boundaries, determining the content and order of elements in the
region, and defining a precise map position of the targeted element.

Defining a Genomic Region

A genomic region of interest is best defined by two flanking markers that are com-
monly used for mapping purposes, such as polymorphic Généthon markers in humans
or MIT microsatellites in mice. Starting with a cytogenetically defined region is more
difficult due to the subjective nature of defining chromosomal band boundaries. Con-
version of cytogenetic boundaries to representative markers can be approximated by
viewing the inferred cytogenetic positions of markers in comprehensive maps such
as GDB’s universal map, UDB, LDB, or eGenome. Because these cytogenetic po-
sitions are inferred and approximate, a conservative approach is recommended when
using cytogenetic positions for region definition. The choice of flanking markers will
impact how precisely a region’s size and exact boundary locations can be defined.
Commonly used markers are often present on multiple, independently derived maps,
so their “position’” on the chromosome provides greater confidence for anchoring a
regional endpoint. In contrast, the exact location of less commonly used markers is
often locally ambiguous. These markers can sometimes be physically tethered to
other markers if a large sequence tract that contains multiple markers can be found.
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This can be performed by BLASTing marker sequences against GenBank or by
scanning e-PCR results in UniGene or eGenome for a particular marker.

Determining and Ordering the Contents of a Defined Region

Once a region has been defined, there are a number of resources available for de-
termining what lies within the region. A good way to start is to identify a map that
contains both flanking markers, either from a chromosome-wide or genome-wide
map from the sources listed above, from a genomic catalogue, or from a local map
that has been generated by a laboratory interested in this particular region. For hu-
mans, GDB is the most inclusive map repository, although many regional maps have
not been deposited in GDB but can be found with a literature search of the corre-
sponding cytogenetic band or a gene known to map to the region. Many localized
maps are physically based and are more accurate than their computationally derived,
whole-chromosome counterparts. For other species, the number of maps to choose
from is usually limited, so it is useful to first define flanking markers known to be
contained in the available maps.

The map or maps containing the flanking markers can then be used to create a
consensus integrated map of the region. This is often an inexact and tedious process.
To begin, it is useful to identify from the available maps an index map that contains
many markers, high map resolution, and good reliability. Integration of markers from
additional maps relative to the index map proceeds by comparing the positions of
markers placed on each map. For example, if an index map contains markers in the
order A-B-C-D and a second map has markers in the order B-E-D, then marker E
can be localized to the interval between markers B and D on the index map. Im-
portantly, however, the relative position of marker E with respect to marker C usually
cannot be accurately determined by this method. Repeated iterations of this process
should allow localization of all markers from multiple maps relative to the index
map. This process is of course significantly reinforced by experimental verification,
such as with STS content mapping of large-insert clones identified for the region-
specific markers or, ideally, by sequence-determined order.

Each marker represents some type of genomic element: a gene, an EST, a pol-
ymorphism, a large-insert clone end, or a random genomic stretch. In humans, iden-
tifying what a marker represents is relatively straightforward. Simply search for the
marker name in GDB or eGenome, and, in most cases, the resulting Web display
will provide a summary of what the marker represents, usually along with hyperlinks
to relevant functional information. For mice, MGD provides a similar function to
GDB. For other organisms, the best source is usually either dbSTS or, if present,
Web sites or publications associated with the underlying maps. GenBank and dbSTS
are alternatives for finding markers, but, because these repositories are passive (re-
quiring researchers to submit their markers rather than actively collecting markers),
many marker sets are not represented. If a marker is known to be expressed,
UniGene, LocusLink, and dbEST are excellent sources of additional information.
Many genes and some polymorphisms have been independently discovered and de-
veloped as markers multiple times, and creating a nonredundant set from a collection
of markers is often challenging. GDB, eGenome, MGD, and (for genes) UniGene
are good sources to use for finding whether two markers are considered equivalent
but even more reliable is a DNA sequence or sequence contig containing both
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marker’s primers. BLAST and the related BLAST2 are efficient for quickly deter-
mining sequence relatedness (Chapter 8).

Obviously, the most reliable tool for marker ordering is a DNA sequence or
sequence contig. For expressed human markers, searching with the marker name in
UniGene or Entrez Genomes returns a page stating where (or if) the marker has been
mapped in GeneMap 99 and other maps, a list of mRNA, genomic, and EST se-
quences, and with Entrez Genomes, a Mapviewer-based graphical depiction of the
maps, sequence-ready contigs, and available sequence of the region. Similarly, GDB
and eGenome show which DNA sequences contain each displayed marker. For other
markers, the sequence from which the marker is derived, or alternatively one of the
primer sequences, may be used to perform a BLAST search that can identify com-
pletely or nearly homologous sequences. The nonredundant, EST, GSS, and HTGS
divisions of GenBank are all potentially relevant sources of matching sequence,
depending on the aim of the project. Only long sequences are likely to have worth-
while marker-ordering capabilities. Finished genomic sequence tracts have at least
some degree of annotation, and scanning the GenBank record for the large sequence
will often yield an annotated list of what markers lie within the sequence and where
they are. Keep in mind that such annotations vary considerably in their thoroughness
and most are fixed in time; that is, they only recognize markers that were known at
the time of the annotation. BLAST, BLAST2, or other sequence-alignment programs
are helpful in identification or confirmation of what might lie in a large sequence.
Also, the NCBI e-PCR Web interface can be used to identify all markers in dbSTS
contained within a given sequence, and this program can be installed locally to query
customized marker sets with DNA sequences (Schuler, 1997).

For genomes for which DNA sequencing is complete or is substantially under-
way, it may be possible to construct local clone or sequence contigs. Among higher
organisms, this is currently possible only for the human and mouse genomes. Al-
though individual clone sequences can be found in GenBank, larger sequence contigs
—sequence tracts comprising more than one BAC or PAC—are more accessible
using the Entrez Genomes Web site (see above). Here, by entering a marker or DNA
accession number into the contigs search box, researchers can identify sequence
contigs containing that marker or element. This site also provides a graphical view
of all other markers contained in that sequence, the base pair position of the markers
in the sequence, and, with the Mapviewer utility, graphical representations of clone
contigs. This process can also be performed using BLAST or e-PCR, although it is
somewhat more laborious.

Once a sequence has been identified for markers in a given region, YAC clone,
DNA fingerprinting, and STC data can be used to bridge gaps. For humans and mice,
the WICGR YAC data provide a mechanism for identifying YAC clones linking
adjacent markers. However, caution should be exercised to rely mainly on double-
linked contigs and/or to experimentally confirm YAC/marker links. Also for human
genome regions, the UWHTSC and TIGR Web sites for identifying STCs from DNA
sequence or BAC clones are very useful. For example, researchers with a sequence
tract can go to the UWHTSC TSC search page, enter their sequence, and find STCs
contained in the sequence. Any listed STC represents the end of a BAC clone whose
insert contains a portion of the input sequence (Venter et al., 1996). The TIGR search
tool is complementary to the UWHTSC search, as the TIGR site requires input of a
large-insert clone name, which yields STC sequences. STCs represent large-insert
clones that potentially extend a contig or link two adjacent, nonoverlapping contigs.
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Similarly, ~375,000 human BAC clones have been fingerprinted for rapid identifi-
cation of overlapping clones (Marra et al., 1997). The fingerprinting data are avail-
able for searching at the Washington University Human Genome Sequencing Center
(WUGSC). Combined use of Entrez, BLAST, the STC resources, and the BAC fin-
gerprinting data can often provide quick and reliable contig assembly by in silico
sequence and clone walking.

Defining a Map Position From a Clone or DNA Sequence

Expressing the chromosomal position of a gene or genomic element in physical, RH,
GL, or cytogenetic terms is not always straightforward. The first approach is to
determine whether the element of interest has already been localized. The great
majority of human transcripts are precisely mapped, and many genes have been well
localized in other organisms as well. For species with advanced DNA sequencing
projects, it is helpful to identify a large DNA sequence tract containing the genomic
element of interest and then determine what markers it contains by looking at the
sequence annotation record in GenBank or by e-PCR. Identified human and mouse
genes are catalogued in GDB and LocusLink or MGD, respectively, and searching
UniGene with a marker name, mRNA or EST sequence accession number, or gene
name will often provide a localization if one is known. Here again, nomenclature
difficulties impede such searches, making it necessary to search each database with
one or more alternate names in some cases. Another alternative is to determine if
the genomic element is contained in a genomic sequence by a simple BLAST search.
Most large genomic sequences have been cytogenetically localized, and this infor-
mation is contained in the sequence annotation record (usually in the title).

If gene-specific or closely linked markers have been used previously for map-
ping, a position can usually be described in terms specific to the mapping method
that was employed. For example, if an unknown gene is found to map very close to
a Généthon marker, then the gene position can be reported relative to the Généthon
GL centiMorgan coordinates. Most human markers and many maps have been placed
in GDB, so this is a good first step in determining whether a marker has been
mapped. Simply search for the relevant marker and see where it has been placed on
one or several maps listed under ‘“‘cytogenetic localizations” and ‘‘other localiza-
tions.” Inferred cytogenetic positions of human genes and markers are usually listed
in GDB, UniGene, and eGenome if the elements have been previously mapped. If
not, band or band range assignments can usually be approximated by finding the
cytogenetic positions of flanking or closely linked markers and genes. Many se-
quenced large-insert clones have been assigned by FISH to a cytogenetic position;
this information can usually be found in the sequence annotation or at the clone
originator’s Web site. The process of determining whether a transcript or genomic
element from another organism has been mapped varies somewhat due to the lack
of extensive genomic catalogs, making it usually necessary to cross-reference a
marker with the GL and/or RH maps available for the species.

If no previous localization exists for a genomic element, some experimental work
must be undertaken. For human and mouse markers, an efficient and precise way to
map a sequence-based element is to develop and map an STS derived from the
element by RH analysis. A set of primers should be designed that uniquely amplify
a product in the species of interest, but not in the RH panel background genome.
An STS is usually unique if at least one primer is intronic. Primers designed from

145



146

GENOMIC MAPPING AND MAPPING DATABASES

an mRNA sequence will not amplify the correct-sized product in genomic DNA if
they span an intron, but a good approximation is to use primers from the 3’ untran-
slated region, as these stretches only rarely contain introns and usually comprise
sequences divergent enough from orthologous or paralogous sequences. However,
beware of pseudogenes and repetitive sequences, and genomic sequence stretches
are superior for primer design. Suitable primers can then be used to type an appro-
priate RH panel; currently, human (G3, GB4, or TNG), mouse, rat, baboon, zebrafish,
dog, horse, cow and pig panels are available commercially. After the relevant panel
is typed, the resulting data can be submitted to a panel-specific on-line RH server
(see above) for the human, mouse, rat, and zebrafish panels. For other species, iso-
lation and FISH of a large-insert clone or GL mapping with an identified or known
flanking polymorphism may be necessary.

INTERNET RESOURCES FOR TOPICS PRESENTED IN CHAPTER 6

DATA REPOSITORIES
The Genome DataBase (GDB)  http://www.gdb.org/
National Center for Biotech-

nology Information (NCBI)

Home Page http://www.ncbi.nlm.nih.gov

Entrez Genomes Division http://www.ncbi.nlm.nih.gov/Entrez/Genome/main _
genomes.html

LocusLink http://www.ncbi.nlm.nih.gov/LocusLink/

GeneMap’99 http://www.ncbi.nlm.nih.gov/genemap99/

OMIM hitp://www.ncbi.nlm.nih.gov/Omim/

HomoloGene http://www.ncbi.nlm.nih.gov/HomoloGene/

BLAST http://www.ncbi.nlm.nih.gov/BLAST/

ePCR http://www.ncbi.nlm.nih.gov/STS/

Entrez sequence viewer
GenBank

Genomic Biology page
dbSTS

http://www.ncbi.nlm.nih.gov/genome/seq/
hitp://www.ncbi.nlm.nih.gov/Genbank
http://www.ncbi.nlm.nih.gov/Genomes
http://www.ncbi.nlm.nih.gov/dbSTS

Mouse Genome Informatics
(MGD/MGI)

RESOURCES AND PROJECTS
Cytogenetic

http://www.informatics.jax.org/

BAC
LBNL/UCSF RMC

U. of Bari
Cytogenetic/YAC data

NCI
CCAP
Infobiogen
SERGG

http://bacpac.med.buffalo.edu/human/
overview.html
http:/fioerror.ucsf.edu:8080/~dfdavy/rmc/
OUTSIDE.html
hitp://bioserver.uniba.it/fish/rocchi
http://www.mpimg-berlin-dahlem.mpg.de/
~cytogen/probedat.htm
http://www.ncbi.nlm.nih.gov/CGAP/
http://www.ncbi.nlm.nih. gov/CCAP/mitelsum.cgi
http://www.infobiogen.fr/services/chromcancer/
http://www.ir.miami.edu/genetics/sergg/
chromosome.html



Coriell
ARKdb

Animal Genome Database
Cedars-Sinai

Genetic Linkage

CEPH Genotype Database
CHLC

Généthon

Marshfield

MAP-O-MAT

Rat Genome Database

Radiation Hybrid

RHdb

RH Information Page
Research Genetics
WICGR RH Maps

WICGR GB4 RH Map
Server

SHGC RH Maps

SHGC G3 Map Server

Sanger Centre GB4/GM
Map server

STS content

WICGR human physical
map

CEPH/Généthon YAC map

WUGSC home

TIGR STCs

UWHTSC STCs

WUGSC BAC fingerprints

UBGSC mouse BAC
fingerprints

Trask

WICGR mouse physical/
genetic map

DNA Sequence

see NCBI links
ORNL Genome Channel

Integrated and Catalogs

UDB
LDB

INTERNET RESOURCES FOR TOPICS PRESENTED IN CHAPTER 6

http://locus.umdnj.edu/nigms/ideograms/I.html

http://www.ri.bbsrc.ac.uk/bioinformatics/ark —
overview.html

http://ws4.niai.affrc.go.jp/jgbase.html

http://www.csmc.edu/genetics/korenberg/
korenberg.html#A

http://www.cephb.fr/cephdb/
http://lpg.nci.nih.gov/CHLC/
hitp://www.genethon.fr/genethon _en.html
http://www.marshmed.org/genetics/
http://compgen.rutgers.edu/mapomat
http://www.lgrmew.edu/projects/rgd. html

hitp://www.ebi.ac.uk/RHdb/
http://compgen.rutgers.edu/rhmap/
http://www.resgen.com
http://www-genome.wi.mit.edu/cgi-bin/contig/phys -
map
http://www-genome.wi.mit.edu/cgi-bin/contig/
rhmapper.pl
http://shgc-www.stanford.edu/Mapping/rh/
http://shgc-www.stanford.edu/RH/
http://www.sanger.ac.uk/Software/RHserver/

http://carbon.wi.mit.edu:8000/cgi-bin/contig/phys _
map
http://www.cephb.fr/bio/ceph-genethon-map.html
http://genome.wustl.edu/gsc/index.shtml
hitp://www.tigr.org/tdb/humgen/bac _end _search/
bac _end_intro.html
http://www.htsc.washington.edu/human/info/
index.cfim
http://genome.wustl.edu/gsc/human/human_
database.shtml
http://www.bcgsc.bc.ca/projects/mouse _mapping/

http://fishfarm.biotech.washington.edu/
BACResource/Random/index.html
http://carbon.wi.mit.edu:8000/cgi-bin/mouse/index

http://compbio.ornl.gov/tools/channel/

http://bioinformatics.weizmann.ac.il/udb/
http://cedar.genetics.soton.ac.uk/public _html/
ldb.html
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LDB Sequence-based maps

eGenome

Comparative

Mouse Homology

Otsuka/Oxford rat-mouse-

human

Human Chromosome 7—

mouse map

Bovine Genome Database
MCW Rat-Mouse-Human
Single-chromosome/regional

1 Rutgers
3 UTSA
5 UCI

5 JGI

7 HSC

7 NHGRI
9 UCL
10 GTC

11 Imperial College
16 JGI

19 JGI

21 Colorado

21 RIKEN

21 MPIMG

X

Mito Emory

HUGO Chromosome
resources

Sanger Centre

ACEDB
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http://cedar.genetics.soton.ac.uk/public _html/
LDB2000.html
http://genome.chop.edu

http://www.informatics.jax.org/menus/homology _
menu.shtml
http://ratmap.ims.u-tokyo.ac.jp/

http://genome.nhgri.nih.gov/chr7/comparative/

http://bos.cvm.tamu.edu/bovgbase.html
http://rgd.mew.edu

http://linkage.rockefeller.edu/chrl/
http://apollo.uthscsa.edu/
http://chrom5.hsis.uci.edu
http://jgi.doe.gov/Data/IGI _mapping.html
http://www.genet.sickkids.on.ca/chromosome7/
http://www.nhgri.nih.gov/DIR/GTB/CHR7
http://www.gene.ucl.ac.uk/chr9/
http://www.cric.com/sequence _center/
chromosome 10/
http://chrll.bc.ic.ac.uk/
http://jgi.doe.gov/Data/IGI _mapping.html
http://jgi.doe.gov/Data/IGI _mapping.html
hitp://www-eri.uchsc.edu/chromosome21/
frames.html
http://hgp.gsc.riken.go.jp/chr2 1/index.html
http://chr21.rz-berlin.mpg.de/
http://www.mpimg-berlin-dahlem.mpg.de/~xteam/
http://infinity.gen.emory.edu/mitomap.html
http://www.gdb.org/hugo/

http://www.sanger.ac.uk/HGP/
http://www.acedb.org/

PROBLEM SET

region of interest)?

You have performed a large-scale genome-wide search for the gene for the inherited
disorder Bioinformatosis. Initial analyses have identified one region with significant
results, flanked by the markers D21S260—-D21S262. There are many genes mapping
within this region, one of which is particularly interesting, superoxide dismutase 1
(SOD1).

1. What is the cytogenetic location of this gene (and hence, at least part of the
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2. How large is this region in cM?

3. What polymorphic markers can be identified in this region (that you might use
to try to narrow the region)? Choose six of these polymorphic markers. Based on
the chosen markers, can a map based on these markers be identified or
constructed?

4. What STS markers have been developed for SOD1? What are their map positions
on the Human Transcript Map (GeneMap *99)? Are these positions statistically
well-supported? Have any SNP markers been identified within SOD1?

5. What other genes are in this region?

6. Has the region including the SOD1 gene been sequenced? What contigs and/or
clones contain SOD1?

7. Have orthologous regions been identified in any other species?

8. Have mutations in SOD1 been associated with any diseases other than
Bioinformatosis?
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As discussed earlier in this book, GenBank was created in response to the explosion
in sequence information resulting from a panoply of scientific efforts such as the
Human Genome Project. To review, GenBank is an annotated collection of all pub-
licly available DNA and protein sequences and is maintained by the National Center
for Biotechnology Information (NCBI). As of this writing, GenBank contains 7 mil-
lion sequence records covering almost 9 billion nucleotide bases. Sequences find
their way into GenBank in several ways, most often by direct submission by indi-
vidual investigators through tools such as Sequin or through ‘“direct deposit” by
large genome sequencing centers.

GenBank, or any other biological database for that matter, serves little purpose
unless the database can be easily searched and entries retrieved in a usable, mean-
ingful format. Otherwise, sequencing efforts have no useful end, since the biological
community as a whole cannot make use of the information hidden within these
millions of bases and amino acids. Much effort has gone into making such data
accessible to the average user, and the programs and interfaces resulting from these
efforts are the focus of this chapter. The discussion centers on querying the NCBI
databases because these more ‘‘general” repositories are far and away the ones most
often accessed by biologists, but attention is also given to a number of smaller,
specialized databases that provide information not necessarily found in GenBank.
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INTEGRATED INFORMATION RETRIEVAL: THE ENTREZ SYSTEM

The most widely used interface for the retrieval of information from biological da-
tabases is the NCBI Entrez system. Entrez capitalizes on the fact that there are
preexisting, logical relationships between the individual entries found in numerous
public databases. For example, a paper in MEDLINE (or, more properly, PubMed)
may describe the sequencing of a gene whose sequence appears in GenBank. The
nucleotide sequence, in turn, may code for a protein product whose sequence is stored
in the protein databases. The three-dimensional structure of that protein may be
known, and the coordinates for that structure may appear in the structure database.
Finally, the gene may have been mapped to a specific region of a given chromosome,
with that information being stored in a mapping database. The existence of such
natural connections, mostly biological in nature, argued for the development of a
method through which all information about a particular biological entity could be
found without having to sequentially visit and query disparate databases.

Entrez, to be clear, is not a database itself—it is the interface through which
all of its component databases can be accessed and traversed. The Entrez informa-
tion space includes PubMed records, nucleotide and protein sequence data, three-
dimensional structure information, and mapping information. The strength of Entrez
lies in the fact that all of this information can be accessed by issuing one and only
one query. Entrez is able to offer integrated information retrieval through the use of
two types of connection between database entries: neighboring and hard links.

Neighboring

The concept of neighboring allows for entries within a given database to be con-
nected to one another. If a user is looking at a particular PubMed entry, the user can
ask Entrez to find all other papers in PubMed that are similar in subject matter to
the original paper. Similary, if a user is looking at a sequence entry, Entrez can return
a list of all other sequences that bear similarity to the original sequence. The estab-
lishment of neighboring relationships within a database is based on statistical mea-
sures of similarity, as follows.

BLAST. Sequence data are compared with one another using the Basic Local
Alignment Search Tool or BLAST (Altschul et al., 1990). This algorithm attempts
to find ‘“‘high-scoring segment pairs” (HSPs), which are pairs of sequences that can
be aligned with one another and, when aligned, meet certain scoring and statistical
criteria. Chapter 8 discusses the family of BLAST algorithms and their application
at length.

VAST. Sets of coordinate data are compared using a vector-based method
known as VAST, for Vector Alignment Search Tool (Madej et al., 1995; Gibrat et
al.,, 1996). There are three major steps that take place in the course of a VAST
comparison:

¢ First, based on known three-dimensional coordinate data, all of the «a-helices
and (-sheets that comprise the core of the protein are identified. Straight-line
vectors are then calculated based on the position of these secondary structure
elements. VAST keeps track of how one vector is connected to the next (that
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is, how the C-terminal end of one vector connects to the N-terminal end of
the next vector), as well as whether a particular vector represents an a-helix
or a B-sheet. Subsequent steps use only these vectors in making comparisons
to other proteins. In effect, most of the coordinate data is discarded at this
step. The reason for this apparent oversimplification is simply due to the scale
of the problem at hand; with over 11,000 structures in PDB, the time that it
would take to do an in-depth comparison of each and every structure with all
of the other structures in the database would make the calculations both im-
practical and intractable. The user should keep this simplification in mind when
making biological inferences based on the results presented in a VAST table.

* Next, the algorithm attempts to optimally align these sets of vectors, looking
for pairs of structural elements that are of the same type and relative orien-
tation, with consistent connectivity between the individual elements. The ob-
ject is to identify highly similar ‘“‘core substructures,” pairs that represent a
statistically significant match above that which would be obtained by com-
paring randomly chosen proteins with one another.

¢ Finally, a refinement is done using Monte Carlo methods at each residue po-
sition in an attempt to optimize the structural alignment.

Through this method, it is possible to find structural (and, presumably, functional)
relationships between proteins in cases that may lack overt sequence similarity. The
resultant alignment need not be global; matches may be between individual domains
of different proteins.

It is important to note here that VAST is not the best method for determining
structural similarities. More robust methods, such as homology model building, pro-
vide much greater resolving power in determining such relationships, since the raw
information within the three-dimensional coordinate file is used to perform more
advanced calculations regarding the positions of side chains and the thermodynamic
nature of the interactions between side chains. Reducing a structure to a series of
vectors necessarily results in a loss of information. However, considering the mag-
nitude of the problem here—again, the number of pairwise comparisons that need
to be made—and both the computing power and time needed to employ any of the
more advanced methods, VAST provides a simple and fast first answer to the question
of structural similarity. More information on other structure prediction methods based
on X-ray or NMR coordinate data can be found in Chapter 11.

Weighted Key Terms. The problem of comparing sequence data somewhat
pales next to that of comparing PubMed entries, free text whose rules of syntax are
not necessarily fixed. Given that no two people’s writing styles are exactly the same,
finding a way to compare seemingly disparate blocks of text poses a substantial
problem. Entrez employs a method known as the relevance pairs model of retrieval
to make such comparisons, relying on what are known as weighted key terms (Wilbur
and Coffee, 1994; Wilbur and Yang, 1996). This concept is best described by ex-
ample. Consider two manuscripts with the following titles:

BRCAl as a Genetic Marker for Breast Cancer
Genetic Factors in the Familial Transmission of the
Breast Cancer BRCAl Gene
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Both titles contain the terms BRCA1, Breast, and Cancer, and the presence
of these common terms may indicate that the manuscripts are similar in their subject
matter. The proximity between the words is also taken into account, so that words
common to two records that are closer together are scored higher than common words
that are further apart. In the current example, the terms Breast and Cancer would
score higher based on proximity than either of those words would against BRCA1,
since the words are next to each other. Common words found in a title are scored
higher than those found in an abstract, since title words are presumed to be ‘“more
important” than those found in the body of an abstract. Overall weighting depends
on the frequency of a given word among all the entries in PubMed, with words that
occur infrequently in the database as a whole carrying a higher weight.

Regardless of the method by which the neighboring relationships are established,
the ability to actually code and maintain these relationships is rooted in the format
underlying all of the constituent databases. This format, called Abstract Syntax No-
tation (ASN.1), provides a format in which all similar fields (e.g., those for a bib-
liographic citation) are all structured identically, regardless of whether the entry is
in a protein database, nucleotide database, and so forth. This NCBI data model is
discussed in depth in Chapter 2.

Hard Links

The hard link concept is much easier conceptually than neighboring. Hard links are
applied between entries in different databases and exist everywhere there is a logical
connection between entries. For instance, if a PubMed entry talks about the sequenc-
ing of a cosmid, a hard link is established between the PubMed entry and the cor-
responding nucleotide entry. If an open reading frame in that cosmid codes for a
known protein, a hard link is established between the nucleotide entry and the protein
entry. If, by sheer luck, the protein entry has an experimentally deduced structure, a
hard link would be placed between the protein entry and the structural entry. The
hard link relationships between databases is illustrated in Figure 7.1.

As suggested by the figure, searches can, in essence, begin anywhere within
Entrez—the user has no constraints with respect to where the foray into this infor-
mation space must begin. However, depending on which database is used as the
jumping-off point, different fields are available for searching. This stands to reason,
inasmuch as the entries in databases of different types are necessarily organized
differently, reflecting the biological nature of the entity they are trying to catalog.

Implementations

Regardless of platform, Entrez searches can be performed using one of two inter-
faces. The first is a client-server implementation known as Network Entrez. This is
the fastest of the Entrez programs in that it makes a direct connection to an NCBI
“dispatcher.”” The graphical user interface features a series of windows, and each
time a new piece of information is requested, a new window appears on the user’s
screen. Because the client software resides on the user’s machine, it is up to the user
to obtain, install, and maintain the software, downloading periodic updates as new
features are introduced. The installation process itself is fairly trivial. Network Entrez
also comes bundled with interactive, graphical viewers for both genome sequences
and three-dimensional structures (Cn3D, cf. Chapter 5).
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Figure 7.1. Overview of the relationships in the Entrez integrated information retrieval
system. Each square represents one of the elements that can be accessed through Entrez,
and the lines represent how each element connects to the other elements. Entrez is under
continuous evolution, with both new components being added and the interrelationships
between the elements changing dynamically.

The second and more widely used implementation is through the World Wide
Web. This option makes use of available Web browsers, such as Internet Explorer
or Netscape, to deliver search results to the desktop. The use of a Web browser
relieves the user of having to make sure that the most current version of Entrez is
installed—as long as the browser is of relatively recent vintage, results will always
be displayed via the latest Entrez release. The Web naturally lends itself to an ap-
plication such as this, since all the neighboring and hard link relationships described
above can easily be expressed as hypertext, allowing the user to navigate by clicking
on selected words in an entry.

The advantage of the Web implementation over the Network version is that the
Web allows for the ability to link to external data sources, such as full-text versions
of papers maintained by a given journal or press or specialized databases that are
not part of Entrez proper. The speed advantage that is gained by the network version
causes its limitation in this respect; the direct connection to the NCBI dispatcher
means that the user, once connected to NCBI, cannot travel anywhere else. The other
main difference between the two methods lies simply in the presentation: the Net-
work version uses a series of windows in presenting search results, whereas the Web
version is formatted as sequential pages, following the standard Web paradigm. The
final decision is one of personal preference, for both methods will produce the same
results within the Entrez search space. However, given that Web Entrez can link to
external data sources, the remainder of this discussion will focus on the Web
implementation.

The Entrez Discovery Pathway: Examples

The best way to illustrate the integrated nature of the Entrez system and to drive
home the power of neighboring is by considering two biological examples, using the
Web version of Entrez as the interface.
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The simplest way to query Entrez is through the use of individual search terms,
coupled together by Boolean operators such as AND, OR, or NOT. Consider the
case in which one wants to retrieve all papers that discuss aspirin in the context of
treating or preventing atherosclerosis. Beginning at the Entrez home page, one would
select PubMed from the Search pull-down menu to indicate that the search is to take
place in the bibliographic portion of the Entrez search space. Within the text box to
the right, one would simply type atherosclerosis [MH] ANDaspirin [NM].
The [MH] qualifying the first term indicates to Entrez that this is a MeSH term;
MeSH stands for medical subject heading and is the qualifier that should be used
when searching by subject. The [NM] qualifying the second term indicates that this
is the name of a substance or chemical. In this case, the query returned 197 papers
(Fig. 7.2; the query is echoed at the top of the new Web page). The user can further
narrow down the query by adding additional terms, if the user is interested in a more
specific aspect of the pharmacology or if there are quite simply too many papers to
read. A list of all available qualifiers is given in Table 7.1.

At this point, to actually look at one of the papers resulting from the search, the
user can click on a hyperlinked author’s name. By doing so, the user is taken to the
Abstract view for the selected paper. Figure 7.3 shows the Abstract view for the first
paper in the hit list, by Cayatte et al. The Abstract view presents the name of the
paper, the list of authors, their institutional affiliation, and the abstract itself, in
standard format. A number of alternative formats are available for displaying this
information, and these various formats can be selected using the pull-down menu
next to the Display button. Switching to Citation format would produce a very
similar-looking entry, the difference being that cataloguing information such as
MeSH terms and indexed substances relating to the entry are shown below the ab-
stract. MEDLINE format produces the MEDLINE/MEDLARS layout, with two-letter
codes corresponding to the contents of each field going down the left-hand side of
the entry (e.g., the author field is denoted by the code AU). Entries in this format
can be saved and easily imported into third-party bibliography management pro-
grams, such as EndNote and Reference Manager.

At the top of the entry are a number of links that are worth mentioning. First,
on the right-hand side is a hyperlink called Related Articles. This is one of the entry
points from which the user can take advantage of the neighboring and hard link
relationships described earlier. If the user clicks on Related Articles, Entrez will
indicate that there are 101 neighbors associated with the original Cayatte reference
—that is, 101 references of similar subject matter—and the first six of these papers
are shown in Figure 7.4. The first reference in the list is the same Cayatte paper
because, by definition, it is most related to itself (the ‘“‘parent’”). The order in which
the neighbored entries follows is from most statistically similar downward. Thus, the
entry closest to the parent is deemed to be the closest in subject matter to the parent.
By scanning the titles, the user can easily find related information on other studies
that look at the pharmacology of aspirin in atherosclerosis as well as quickly amass
a bibliography of relevant references. This is a particularly useful and time-saving
functionality when one is writing grants or papers because abstracts can be scanned
and papers of real interest identified before one heads off for the library stacks.

The next link in the series is labeled Books, and clicking on that link will take
the user to a heavily hyperlinked version of the original citation. The highlighted
words in this view correspond to keywords that can take the user to full-text books
that are available through NCBI. The first of these books to be made available is
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TABLE 7.1. Entrez Boolean Search Statements

General syntax:
search term [tag] boolean operator search term [tag] . . .

where [tag] =

[AD] Affiliation
[ALL] All fields
[AU] Author name

O’'Brien J [AU] yields all of O’Brien JA, O’Brien JB, etc.
‘*O’'BrienJ’ ' [AU] yields only O’Brien J

[RN] Enzyme Commission or Chemical Abstract Service numbers
[EDAT] Entrez date
YYYY/MM/DD, YYYY/MM, or YYYY
[TP] Issue of journal
[TA] Journal title, official abbreviation, or ISSN number

Journal of Biological Chemistry
J Biol Chem
0021-9258

[LA] Language
[MAJR] MeSH major ropic

One of the major topics discussed in the article
[MH] MeSH terms

Controlled vocabulary of biomedical terms (subject)
[PS] Personal name as subject

Use when name is subject of article, e.g., Varmus H [PS]
[DP] Publication date

YYYY/MM/DD, YYYY/MM, or YYYY
[PT] Publication type

Review

Clinical Trial

Lectures

Letter

Technical Publication
[SH] Subheading

Used to modify MeSH Terms

hypertension [MH] AND toxicity [SH]

[NM] Substance name
Name of chemical discussed in article
[TW] Text words

All words and numbers in the title and abstract, MeSH terms,
subheadings, chemical substance names, personal name as subject, and
MEDLINE secondary sources

[UID] Unique identifiers (PMID/MEDLINE numbers)

[VI] Volume of journal

and boolean operator = AND, OR, or NOT
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Molecular Biology of the Cell (Alberts et al., 1994). Following the Cayette example,
if the user clicks on atherosclerosis at this point, it will take them to the
relevant part of the textbook, a section devoted to how cells import cholesterol by
receptor-mediated endocytosis (Fig. 7.5). From this page, the user can navigate
through this particular unit, gathering more general information on transport from
the plasma membrane via endosomes and vesicular traffic in the secretory and en-
docytic pathways.

The final link in the series in the upper right is LinkOut. This feature provides
a list of third-party Web sites and resources relating to the Entrez entry being viewed,
such as full-text of articles that can be displayed directly through the Web browser,
or the capability of ordering the document through services such as Loansome Doc.
A ““cubby” service for LinkOut enables users to customize which links are displayed
in a LinkOut view. Another way of getting to the full text of an article is by following
a direct link to the publisher’s Web site. In the Abstract view for the Cayette example
(Fig. 7.3), a button directly under the citation is marked ATVB, for Arteriosclerosis,
Thrombosis, and Vascular Biology, the journal in which the paper is published. With
the proper individual or institutional subscription privileges, one would be able to
immediately see the full text of the paper, including all figures and tables.

There is another way to perform an Entrez query, involving some built-in fea-
tures of the system. Consider an example in which one is attempting to find all genes
coding for DNA-binding proteins in methanobacteria. In this case, the search would
begin by setting the Search pull-down menu to Nucleotide and then typing the
term DNA-binding into the text box. This search returns 23,797 entries in which
the search term appears (Fig. 7.6). At this point, to narrow down the search, the user
would click on the Limits hyperlink, directly below the text box. This brings the
user to a new page that allows the search to be limited, as implied by the name of
the hyperlink. Here, the search will be limited by organism, so the Limited To pull-
down is changed to Organism, and the word methanobacterium is typed into
the search box (Fig. 7.7). Clicking Go will now return all of the entries in which
Methanobacterium is the organism (303). The results from the first search can also
be combined with those from the second by clinking on the History hyperlink
below the text box, resulting in a list of recent queries (Fig. 7.8). The list shows the
individual queries, whether those queries were field-limited, the time at which the
query was performed, and how many entries that individual query returned. To com-
bine two separate queries into one, the user simply combines the queries by number;
in this case, because the queries are numbered #8 and #9, the syntax would be #8
AND #9. Clicking Preview regenerates a table, showing the new, combined query
as #10, containing three entries. Alternatively, clicking Go shows the user the three
entries, in the now-familiar nucleotide summary format (Fig. 7.9).

As before, there are a series of hyperlinks to the upper right of each entry; three
are shown for the first entry, which is for the M. thermoautotrophicum tfx gene. The
PubMed link takes the user back to the bibliographic entry or entries corresponding
to this GenBank entry. Clicking on Protein brings into play one of the hard link
relationships, showing the GenPept entry that corresponds to the tfx gene’s concep-
tual translation (Fig. 7.10). Notice that, within the entry itself, the scientific name of
the organism is represented as hypertext; clicking on that link takes the user to the
NCBI Taxonomy database, where information on that particular organism’s lineage
is available. One of the useful views at this level is the Graphics view; this view
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attempts to show graphically all of the features described within the entry’s feature
table, providing a very useful overview, particularly when the feature table is very
long. The Related Sequences link shows all sequences similar to that of the tfx gene
at the nucleotide level, in essence showing the results of a precomputed BLAST
search.

The last part of Entrez to be discussed deals with structures. Structure queries
can be done directly by specifying Structure in the Search pull-down menu. For
example, suppose that one wishes to find out information about the structure of
HMG-box B from rat, whose accession number is IHMF. Typing 1HMF into the
query box leads the user to the structure summary page for IlHMF, which has a
decidedly different format than any of the pages seen so far (Fig. 7.11). This page
shows details from the header of the source MMDB document (which is derived
from PDB), links to PubMed and to the taxonomy of the source organism, and links
to both sequence and structure neighbors. The Sequence Neighbors links show neigh-
bors to lHMF on the basis of sequence—that is, by BLAST search—thus, although
this is a structure entry, it is important to realize that sequence neighbors have
nothing to do with the structural information, at least not directly. To get information
about related structures, one of the Structure Neighbor links can be followed, pro-
ducing a table of neighbors as assessed by VAST. For a user interested in gleaning
initial impressions about the shape of a protein, the Cn3D plug-in, invoked by click-
ing on View/Save Structure, provides a powerful interface, giving far more
information than anyone could deduce from simply examining a string of letters (the
sequence of the protein). The protein may be rotated along its axes by means of the
scroll bars on the bottom, top, and right-hand side of the window or may be freely
rotated by clicking and holding down the mouse key while the cursor is within the
structure window and then dragging. Users are able to zoom in on particular parts
of the structure or change the coloration of the figure, to determine specific structural
features about the protein. In Figure 7.12, for instance, Spacefilling and Hy-
drophobicity were chosen as the Render and Color options, respectively. More
information on Cn3D is presented in Chapter 5 as well as in the online Cn3D doc-
umentation. In addition, users can save coordinate information to a file and view the
data using third-party applications such as Kinemage (Richardson and Richardson,
1992) and RasMol (Sayle and Milner-White, 1995).

Finally, at any point along the way in using Entrez, if there are partial or com-
plete search results that the user wishes to retain while moving onto a new query,
the Add to Clipboard button can be pushed. This stores the results of the current
query, which the user can return to by clicking the Clipboard hyperlink directly under
the text box. The clipboard holds a maximum of 500 items, and the items are held
in memory for 1 h.

LOCUSLINK

The Entrez system revolves necessarily around the individual entries making up the
various component databases that are part of the Entrez search space. Another way
to think about this search space is to organize it around discrete genetic loci. NCBI
LocusLink does just this, providing a single query interface to various types of
information regarding a given genetic locus, such as phenotypes, map locations, and
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Figure 7.12. The structure of 1THMF rendered using Cn3D version 3.0, an interactive mo-
lecular viewer that acts as a plug-in to Web Entrez. Cn3D is also bundled with and can be
used with Network Entrez. Details are given in the text.

homologies to other genes. The LocusLink search space currently includes infor-
mation from humans, mice, rats, fruit flies, and zebrafish.

With the use of the gene for the high-mobility group protein HMGI as an ex-
ample, the LocusLink query begins by the user simply typing the name of the gene
into the query box appearing at the top of the LocusLink home page. Alternatively,
the user could select the gene of interest from an alphabetical list. The query on
HMG1 returns three LocusLink entries, from human, mouse, and rat (Fig. 7.13). In
this view, the user is given the Locus ID in the first column; the Locus ID is intended
to be a unique, stable identifier that is associated with this gene locus. Clicking on
the Locus ID for the human (3146) produces the LocusLink Report view, as shown
in Figure 7.14. The Report view begins with links to external sources of information,
shown as colored buttons at the top of the page. In this particular report, the links



LOCUSLINK

C . —
<> NCBI o
Fubhded Entrez BLAST bl b 30

S LTS
Query: [HMG1

Locuslink Home
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Help 3 loci found
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Figure 7.13. Results of a LocusLink query, using HMG1 as the search term. The report
shows three entries corresponding to HMG1 in human (Hs), mouse (Mm), and rat (Rn). A
brief description is given for each found locus, as well as its chromosomal location. A series
of blocks is found to the right of each entry, providing a jumping-off point to numerous
other sources of data; these links are described in the text.

would lead the user to PubMed (Pub), UniGene (UG, cf. Chapter 12), the dbSNP
variation database (VAR, cf. Chapter 12), HomoloGene (HOMOL, see below), and
the Genome Database (GDB). These offsite links will change from entry to entry,
depending on what information is available for the gene of interest. A complete list
of offsite data sources is given in the LocusLink online documentation.

Continuing down the Report view, in the section marked Locus Information, the
user is presented with the official gene symbol, along with any alternate symbols
that may have traditionally been used in the literature or in sequence records. This
section would also include information on the name of the gene product, any aliases
for the name of the gene product, the Enzyme Commission number, the name of any
diseases that result from variants at this gene locus, and links to OMIM and UniGene.
Only those pieces of information that are known or are applicable to this particular
gene locus are shown.

In the section labeled Map Information, the report shows what chromosome this
locus is on, the cytogenetic and genetic map positions, when known, and any STS
markers that are found within the mRNA corresponding to this locus. There is a
hyperlink that can take the user to the Entrez Map Viewer, showing the position of
this locus and the relationship of this locus to surrounding loci (Fig. 7.15). The Map
Viewer shows the chromosomal ideogram to the left, with the highlighted region
marked by a thick bar to the right of the ideogram. The user can zoom in or out by
clicking on the icon above the ideogram. In the main window, the user is presented
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Figure 7.14. The LocusLink report view for human HMG1. The report is divided into six
sections, providing gene symbol, locus, map, RefSeq, and GenBank information, as well as
links to external data sources. See text for details.

with both the cytogenetic and sequence map. In this particular view, 20 genes are
shown, with the original locus of interest highlighted. As with most graphical views
of this type, the majority of the elements in this view are clickable, taking the user
to more information about that particular part of either the cytogenetic or sequence
map.

The next section deals with RefSeq information. RefSeq is short for the NCBI
Reference Sequence Project, which is an effort aimed at providing a stable, reference
sequence for all of the molecules corresponding to the central dogma of biology.
The intention is that these reference sequences will provide a framework for making
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Figure 7.15. The Entrez map view for human HMG1. The chromosomal position is indi-
cated by the ideogram at the left of the window. The main window contains a depiction
of both the cytogenetic and sequence map, with the HMG1 gene highlighted. Interestingly,
the gene shown at the very bottom of this view (SOX1), like HMG1, is also a member of
the high mobility group family of proteins (Baxevanis and Landsman, 1995).

functional annotations, as well as for information regarding mutations, gene expres-
sion, and polymorphisms. The sequences listed in this section represent the sequences
that were used to build the corresponding RefSeq record. Notice that RefSeq nucle-
otide records are preceded by NM and that protein records are preceded by NP. A
blue button appears next to protein information if there is also structural information
available about the protein. The final portion of the LocusLink report shows the
GenBank accession numbers that correspond to this locus. The middle column in-
dicates the molecule type for these GenBank entries, with m standing for mRNA, g
for genomic DNA, e for an EST, and u for undetermined. In this particular case,
there is also a link to the GeneCard for HMG1; clicking on that hyperlink takes the
user to the GeneCards database at the Weizmann Institute, providing a concise sum-
mary of the function of this gene.
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Another way to proceed through the information is to return to the query result
screen shown in Figure 7.13 and use the linked alphabet blocks shown to the right
of each of the entries. In turn, these links are

* P, for PubMed bibliographic entries corresponding to the locus;
¢ O, for the Online Mendelian Inheritance in Man summary on this locus;
* R, for the RefSeq entries corresponding to the locus;

e G, for the individual GenBank entries related to the locus; these entries will
correspond to the RefSeq entry, as shown in the LocusLink Report view;

¢ H, for HomoloGene. HomoloGene, which is discussed in greater detail in
Chapter 12, allows the user to find both orthologs and homologs for genes
represented in LocusLink and UniGene, the assignments being made based on
sequence similarity;

* U, whether this locus is part of a UniGene cluster; and

e V, for variation data on this locus contained within dbSNP.

When following either the PubMed or GenBank links, the user is, in essence,
returned to the Entrez search space, enabling the user to take advantage of Entrez’s
navigational features once again.

SEQUENCE DATABASES BEYOND NCBI

Although it may appear from this discussion that NCBI is the center of the sequence
universe, many specialized sequence databases throughout the world serve specific
groups in the scientific community. Often, these databases provide additional infor-
mation such as phenotypes, experimental conditions, strain crosses, and map features.
The data are of great importance to these subsets of the scientific community, inas-
much as they can influence rational experimental design, but such types of data do
not always fit neatly within the confines of the NCBI data model. Development of
specialized databases necessarily ensued, but they are intended to be used as an
adjunct to GenBank, not in place of it. It is impossible to discuss all of these kinds
of databases here, but, to emphasize the sheer number of such databases that exist,
Nucleic Acids Research devotes its first issue every year to papers describing these
databases (cf. Baxevanis, 2001).

An example of a specialized organismal database is the Saccharomyces Genome
Database (SGD), housed at the Stanford Human Genome Center. The database pro-
vides a very simple search interface that allows text-based searches by gene name,
gene information, clone, protein information, sequence name, author name, or full
text. For example, using Gene Name as the search topic and hhol as the name of
the gene to be searched for produces a SacchDB information window showing all
known information on locus HHO1 (Fig. 7.16). This window provides jumping-off
points to other databases, such as GenBank/GenPept, MIPS, and the Yeast Protein
Database (YPD). Following the link to Sacch3D for this entry provides information
on structural homologs of the HHO1 protein product found in PDB, links to sec-
ondary and tertiary structure prediction sites, and precomputed BLAST reports
against a number of query databases. Returning to the Locus window and clicking
on the map in the upper right-hand corner, the user finds a graphical view of the
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area surrounding the locus in question. Available views include physical maps, ge-
netic maps, and chromosomal physical maps, among others. The chromosomal fea-
tures map view for HHO1 is shown in Figure 7.17. Note the thick bar at the top of
the figure, which gives the position of the current view with respect to the centro-
mere. Clicking on that bar allows the user to move along the chromosome, and
clicking on individual gene or ORF name (or, as the authors cite in the figure legend,
““any little colorful bar’’) gives more detailed information about that particular region.

Another example of an organism-specific database is FlyBase, whose goal is to
maintain comprehensive information on the genetics and molecular biology of Dro-
sophila. The information found in FlyBase includes an extensive Drosophila bibli-
ography, addresses of over 6,000 researchers involved in Drosophila projects, a com-
pilation of information on over 51,500 alleles of more than 13,200 genes, information
about the expression and properties of over 4,800 transcripts and 2,500 proteins, and
descriptions of over 16,700 chromosomal aberrations. Also included is relevant map-
ping information, functional information on gene products, lists of stock centers and
genomic clones, and information from allied databases. Searches on any of these
“fields” can be done through a simple search mechanism. For example, searching
by gene symbol using capu as the search term brings up a record for a gene named
cappuccino, which is required for the proper polarity of the developing Drosophila
oocyte (Emmons et al., 1995). Calling up the cytogenetic map view generates a map
showing the gene and cytologic location of cappuccino and other genes in that im-
mediate area, and users can click on any of the gene bars to bring up detailed
information on that particular gene (Fig. 7.18). The view can be changed by selecting

Features around YPL127C on chromosome XVI

Spanning a region 10 kb left and 10 kb right
(coordinates 298327 to 319603)

200 408 600 e
) AL " FEF4 D ' ERE1E ' RFCAE |
295 o 390
YPL133C
ANC 1
CO¥11 RFLS SPOLS M1 KAP12@ HIP29

288 o 320

YRLIZAC TEF1 HHO1 RMYL  TFEZ
5D Fug 15 2666

Figure 7.17. A chromosomal features map resulting from the query used to generate the
Locus view shown in Figure 7.16. Chromosome XVI is shown at the top of the figure, with
the exploded region highlighted by a box. Most items are clickable, returning detailed
information about that particular gene, ORF, or construct.
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Figure 7.18. Genes view resulting from querying FlyBase for the cappucino gene (capu in
the figure, between positions 24C and 24D on the cytologic map). The graphical view can
be changed by clicking on any of the Class buttons that appear below the figure, as de-
scribed in the text. Information on any of the genes shown can be obtained by clicking on
the appropriate bar.

one of the Class buttons at the bottom of the window, so that a graphical view of
cosmids, deficiencies, duplications, inversions, transpositions, translocations, or other
aberrations can be examined instead.

MEDICAL DATABASES

Although the focus of this chapter (and the book in general) is on sequences, data-
bases cataloguing and organizing sequence information are not the only kinds of
databases useful to the biologist. An example of such a non-sequence-based infor-
mation resource that is tremendously useful in genomics is Online Mendelian In-
heritance in Man (OMIM), the electronic version of the catalog of human genes and
genetic disorders founded by Victor McKusick at The Johns Hopkins University
(McKusick, 1998; Hamosh et al., 2000). OMIM provides concise textual information
from the published literature on most human conditions having a genetic basis, as
well as pictures illustrating the condition or disorder (where appropriate) and full
citation information. Because the online version of OMIM is housed at NCBI, links
to Entrez are provided from all references cited within each OMIM entry.

181



INFORMATION RETRIEVAL FROM BIOLOGICAL DATABASES

182

"9WOJPUAS UBWINED-DISNM DA 104 SIUBLIBA D1|3)|e
JO 151] 8Y1 smoys 24nbiy aYL "INIINO YBnouyy pauielqo aq ued jeyl syueliea d1j3|je Jo isi| e jo ajdwexa uy "gL "/ 2Inbi4

"pAIHAYUL A[[EUISYeIE SeA ORI ST ], “uoneumuna) amjeward o) Suipea] ymsatresy ¢ ur Sunnsar ‘auaf YA 2U JO TTIT
pue [11Z apnoajonu e uonajep dq-z e paynuspt (0007) "1 12 suolg ‘()0L£07) suopuls Ueuney-yoIsn o JO a5ed ysnuy-uou siperods e uj

[ 001112 “13d 49-Z *SAAW] INOAANAS NVIWNANVIA-ADISNADIN 000"

& (P00 96 F00) vonEIMM YRysarel] € 10) MofLzoiaay punoduros € sem uared sy *dnosf [onuoo ysnuy-uou
£ UWIOKJ SALOSOUION]D ()T JSA0 UL PAJHUSPT JOU SEM UONEINIU SIY [, * /¢ UOPOD T& UOHMISNS SUINSAD-01-auIsols) € ur Sunnsal ‘suad gy YW 241
JO 266 SPUOS[ONU Te UONISUEN ()-01-% Uk paynuapl (000Z) 12 12 suolg (00L9¢7) SWOIpUAS eunne s -{oIsn Oy JO 280 Ysuy-uou oipeiods ¢ uj

[SADLEAAL ‘SHAW] ANOTANAS NVINANVIA-ADISNADW €000°

& adfiouayd G YIN AP Jo souensuad safdwosut s it WUsIsuoo ‘adAjousyd [euriou e per] SWOSOWoNd

pajoajfe sy Jof sNOSAZOUION STENPIAIPUT 32l ], "YSTU JApI0) PO o) Suctne A)1s0SAZ0Wo UT STenpIATpUl pajdajje [[& Ul punoj ses afa[pe punoduoo
sIL *(T000 968+09) UONEINUE X pRH L) SILTED Yety) S]3][w swues ay) vo uasaid st uonenur sy |, “AysoSAzowoy ut auad G I 2 Jo TpE Uopod

Te UOTIMNSqNS aUHas-0}-aUTIee We panuapt (0Q0Z) "¢ 12 2uoig {00,967} eworpuis wewrne-yorsno] P uaned ysmuy Japig pio we u]

[Aaszrev v ‘SIAW] GINOAANAS NVINANVI-ADISNIDW 2000

& -uonouny paonpas Ajrenueisqns o) spes| sumoadeno Jay1o UI YoM ‘sisAoIpAy

dLV Wi a1opeIut 01 paolpaid ses GONEINUE ST ], “SWOSOWIOID [0NUOD YSIUY-UOU ()] [EUONIPPE UL UT PUNOJ aJom SUONMASYNS YSAUY o4 JO
Isiap ysnuy’ aip Suoure Japrosip sI) jo souaproul sy Sursn paemores Lousnbaay sapued payetunsa sy o) rejrus ‘on7 Ajewixordde jo Louanbang
IaLeD € $)5985ns Yomm ‘SAUOSOMWOND [ONU0D, YSIUIY 00T JO T U punoj seam uonemnut suiL (7000 962500 398) UONNINSYNS PUCOas € SEm

U3 S[3[[E SUIES ) U0 ‘A)SOBAZOWOY Ul PUNOY SEAM UONEINUL S| * Hg UOPOD 1€ UONMINSYNS SMISOIA)-0)-aulpnsny € ur Sunnsal ‘suad gy YW 214

JO LETT SpNO3[oNU Je UonISUeN [-01-73 ¢ PAYNUSPT ((00T) ¢ 12 3U0lg (DDLOET) Swolpuss uewnes]-oIsn O[] Yils jusnied ysmuy Ispio IO ve uf

[AALPESIH ‘STAW] FNOAANAS NVIWANVI-ADISNADW F000°

(sojdurexs pajoajas)

SLNVIUVA OI'THTIV




INTERNET RESOURCES FOR TOPICS PRESENTED IN CHAPTER 7

OMIM has a defined numbering system in which each entry is assigned a unique
number, similar to an accession number, but certain positions within that number
indicate information about the genetic disorder itself. For example, the first digit
represents the mode of inheritance of the disorder: 1 stands for autosomal dominant,
2 for autosomal recessive, 3 for X-linked locus or phenotype, 4 for Y-linked locus
or phenotype, 5 for mitochondrial, and 6 for autosomal locus or phenotype. (The
distinction between 1 or 2 and 6 is that entries catalogued before May 1994 were
assigned either a 1 or 2, whereas entries after that date were assigned a 6 regardless
of whether the mode of inheritance was dominant or recessive.) An asterisk preceding
a number indicates that the phenotype caused by the gene at this locus is not influ-
enced by genes at other loci; however, the disorder itself may be caused by mutations
at multiple loci. Disorders for which no mode of inheritance has been determined
do not carry asterisks. Finally, a pound sign (#) indicates that the phenotype is caused
by two or more genetic mutations.

OMIM searches are very easy to perform. The search engine performs a simple
query based on one or more words typed into a search window. A list of documents
containing the query words is returned, and users can select one or more disorders
from this list to look at the full text of the OMIM entry. The entries include infor-
mation such as the gene symbol, alternate names for the disease, a description of
the disease (including clinical, biochemical, and cytogenetic features), details on the
mode of inheritance (including mapping information), a clinical synopsis, and ref-
erences. A particularly useful feature is lists of allelic variants; a short description is
given after each allelic variant of the clinical or biochemical outcome of that partic-
ular mutation. There are currently over 1,000 gene entries containing at least one
allelic variant that either causes or is associated with a discrete phenotype in humans.
Figure 7.19 shows an example of an allelic variant list, in this case for mutations
observed in patients with McKusick-Kaufman syndrome (MKKS).

INTERNET RESOURCES FOR TOPICS PRESENTED IN CHAPTER 7

BLAST http://www.ncbi.nlm.nih.gov/BLAST/

Cn3D http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml

EndNote http://www.niles.com/

Entrez http://www.ncbi.nlm.nih.gov/Entrez/

FlyBase http://flybase.bio.indiana.edu

GDB http://www.gdb.org/

GeneCards http://bioinfo.weizmann.ac.il/cards/

HomoloGene http://www.ncbi.nlm.nih.gov/HomoloGene/

Kinemage http://www.umass.edu/microbio/rasmol/mage.htm

LocusLink http://www.ncbi.nlm.nih.gov/LocusLink/

MIPS http://www.mips.biochem.mpg.de/

MMDB http://www.ncbi.nlm.nih.gov/Structure/MMDB/
mmdb.shtml

OMIM http://www.ncbi.nlm.nih.gov/Omim

PDB http://www.rcsb.org/pdb/

RasMol http://'www.umass.edu/microbio/rasmol/

Reference Manager http://www.risinc.com/
Sacch3D http://www-genome.stanford.edu/Sacch3D/
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SGD http://genome-www.stanford.edu/Saccharomyces/
VAST http://www.ncbi.nlm.nih.gov/Structure/VAST/vast.shtml
YPD http://www.proteome.com/databases/index.html

PROBLEM SET

1.

You have been watching the evening news and have just heard an interesting
story regarding recent developments on the genetics of colorectal cancer. You
would like to get some more information on this research, but the news story was
short on details. The only hard information you have is that the principal inves-
tigator was Bert Vogelstein at the Johns Hopkins School of Medicine.

a. How many of the papers that Dr. Vogelstein has written on the subject of
colorectal neoplasms are available through PubMed?

b. A paper by Hedrick and colleagues describes the role of the DCC gene product
in cellular differentiation and colorectal tumorigenesis. Based on this study,
what is the chromosomal location of the DCC gene?

c. DCC codes for a cell-surface-localized protein involved in tumor suppression.
From what cell line and tissue type was the human tumor suppressor protein
(not the precursor) isolated?

d. In the DCC human tumor suppressor protein precursor, what range of amino
acids comprise the signal sequence?

Online Mendelian Inheritance in Man (OMIM) indicates that the development of
colorectal carcinomas involves a dominantly acting oncogene coupled with the
loss of several genes (such as DCC) that normally suppress tumorigenesis.

a. An allelic variant of DCC also involved in esophageal carcinoma has been
cataloged in OMIM. What was the mutation at the amino acid level, and what
biological effect did it have in patients?

b. Based on the MIM gene map, how many other genes have been mapped to
the exact cytogenetic map location as DCC by PCR of somatic cell hybrid
DNA?

c. The OMIM entry for DCC is coupled to the Mouse Genome Database at The
Jackson Laboratory, showing that the corresponding mouse gene is located on
mouse chromosome 18. What is the resultant phenotype of a null mutation of
Dcc in the mouse?

. A very active area of commercial research involves the identification and devel-

opment of new sweeteners for use by the food industry. Whereas traditional sweet-
eners such as table sugar (sucrose) are carbohydrates, most current research is
instead focusing on proteins which have an intrinsically sweet taste. Because these
“sweet-tasting proteins’’ are much sweeter than their carbohydrate counterparts,
they are, in essence, calorie free, since so little is used to achieve a sweet taste
in food. The most successful example of such a protein is aspartame; however,
aspartame is synthetic and does not occur in nature. Alternate, natural protein
sources are being investigated, including a sweet tasting protein called monellin.
a. According to Ogata and colleagues, how much sweeter than ordinary sugar is
monellin on both a molar and weight bases?
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b. Based on the SWISS-PROT entry for monellin chain B from serendipity berry,
how many a-helices and B-strands does this protein possess?

c. What residue (amino acid and position), when blocked, abolishes monellin’s
sweet taste?

d. Three-dimensional structures are available for monellin. What other structure
is most closely related to monellin structure 1MOL, as assessed by VAST P-
value? Does this structure have the highest sequence similarity to 1IMOL as
well?

e. The monellin structure is based on a single-chain fusion product. How do the
stability and renaturation properties of the fusion product differ from that of
the native protein?
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INTRODUCTION

There is a long tradition in biology of comparative analysis leading to discovery.
For instance, Darwin’s comparison of morphological features of the Galapagos
finches and other species ultimately led him to postulate the theory of natural selec-
tion. In essence, we are performing the same type of analysis today when we compare
the sequences of genes and proteins but in much greater detail. In this activity, the
similarities and differences—at the level of individual bases or amino acids—are
analyzed, with the aim of inferring structural, functional, and evolutionary relation-
ships among the sequences under study. The most common comparative method is
sequence alignment, which provides an explicit mapping between the residues of
two or more sequences. In this chapter, only pairwise alignments, in which only two
sequences are compared, will be discussed; the process of constructing multiple
alignments, which involves more than two sequences, is discussed in Chapter 9. The
number of sequences available for comparison has grown explosively since the
1970s, when development of rapid DNA sequencing methodology sparked the “‘big
bang” of sequence information expansion. Comparison of one sequence to the entire
database of known sequences is an important discovery technique that should be at
the disposal of all molecular biologists. Over the past 30 years, improvements in the
speed and sophistication of sequence alignment algorithms, not to mention perfor-
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mance of computers, have more than kept pace with the growth in the size of the
sequence databases. Today, with the complete genomes and large cDNA sequence
collections available for many organisms, we are in the era of ‘“‘comparative gen-
omics,”” in which the full gene complement of two organisms can be compared with
one another.

THE EVOLUTIONARY BASIS OF SEQUENCE ALIGNMENT

One goal of sequence alignment is to enable the researcher to determine whether
two sequences display sufficient similarity such that an inference of homology is
justified. Although these two terms are often interchanged in popular usage, let us
distinguish them to avoid confusion in the current discussion. Similarity is an ob-
servable quantity that might be expressed as, say, percent identity or some other
suitable measure. Homology, on the other hand, refers to a conclusion drawn from
these data that two genes share a common evolutionary history. Genes either are or
are not homologous—there are no degrees for homology as there are for similarity.
For example, Figure 8.1 shows an alignment between the homologous trypsin
proteins from Mus musculus (house mouse) and Astracus astracus (broad-fingered
crayfish), from which it can be calculated that these two sequences have 41%
identity.

Bearing in mind the goal of inferring evolutionary relationships, it is fitting that
most alignment methods try, at least to some extent, to model the molecular mech-
anisms by which sequences evolve. Although it is presumed that homologous se-
quences have diverged from a common ancestral sequence through iterative molec-
ular changes, it is actually known what the ancestral sequence was (barring the
possibility that DNA could be recovered from a fossil); all that can be observed are

I S=S *I

Mouse IVGGYNCEENSVPYQVSLNS----— GYHFCGGSLINEQWVVSAGHCYK-—--—----— SRIQV
Crayfish IVGGTDAVLGEFPYQLSFQETFLGFSFHFCGASTYNENYATITAGHCVYGDDYENPSGLQT

*

Mouse RLGEHNIEVLEGNEQFINAAKI IRHPQYDRKTLNNDIMLIKLSSRAVINARVSTISLPTA
Crayfish  VAGELDMSVNEGSEQTITVSKIILHENFDYDLLDNDISLLKLSGSLTFNNNVAPIALPAQ

S=S

Mouse PPATGTKCLISGWGNTASSGADYPDELQCLDAPVLSQAKCEASYPG-KITSNMFCVGFLE
Crayfish  GHTATGNVIVTGWG-TTSEGGNTPDVLOKVTVPLVSDAECRDDYGADEIFDSMICAGVPE

=S
0 | =
Mouse GGKDSCQGDSGGPVVCNG----QLOGVVSWGDGCAQKNKPGVYTKVYNYVKWIKNTIAAN
Crayfish GGKDSCQOGDSGGPLAASDTGSTYLAGIVSWGYGCARPGYPGVYTEVSYHVDWIKANAY - -

Figure 8.1. Conserved positions are often of functional importance. Alignment of trypsin
proteins of mouse (SWISS-PROT P07146) and crayfish (SWISS-PROT P00765). Identical resi-
dues are underlined. Indicated above the alignments are three disulfide bonds (—s-s-),
with participating cysteine residues conserved, amino acids side chains involved in the charge
relay system (asterisk), and active side residue governing substrate specificity (diamond).
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the raw sequences from extant organisms. The changes that occur during divergence
from the common ancestor can be categorized as substitutions, insertions, and de-
letions. In the ideal case, in which a sequence alignment genuinely reflects the evo-
lutionary history of two genes or proteins, residues that have been aligned but are
not identical would represent substitutions. Regions where the residues of one se-
quence correspond to nothing in the other would be interpreted as either an insertion
into one sequence or a deletion from the other. These gaps are usually represented
in the alignment as consecutive dashes (or other punctuation character) aligned with
letters. For example, the alignment in Figure 8.1 contains five gaps.

In a residue-by-residue alignment, it is often apparent that certain regions of a
protein, or perhaps specific amino acids, are more highly conserved than others. This
information may be suggestive as to which residues are most crucial for maintaining
a protein’s structure or function. In the trypsin alignment of Figure 8.1, the active
site residues that determine substrate specificity and provide the ‘‘charge relay sys-
tem’” of serine proteases correspond to conserved positions, as do the cysteines res-
idues that form several disulfide bonds important for maintaining the enzyme’s struc-
ture. On the other hand, there may be other positions that do not play a significant
functional role yet happen to be identical for historical reasons. Particular caution
should be taken when the sequences are taken from very closely related species
because similarities may be more reflective of history than of function. For example,
regions of high sequence similarity between mouse and rat homologs may simply
be those that have not had sufficient time to diverge. Nevertheless, sequence align-
ments provide a useful way to gain new insights by leveraging existing knowledge,
such as deducing structural and functional properties of a novel protein from com-
parisons to those that have been well studied. It must be emphasized, however, that
these inferences should always be tested experimentally and not assumed to be cor-
rect based on computational analysis alone.

By observing a surprisingly high degree of sequence similarity between two
genes or proteins, we might infer that they share a common evolutionary history,
and from this it might be anticipated that they should also have similar biological
functions. But again, this should be treated as hypothetical until tested experimen-
tally. Zeta-crystallin, for instance, is a component of the transparent lens matrix of
the vertebrate eye. However, on the basis of extended sequence similarity, it can be
inferred that its homolog in E. coli is the metabolic enzyme quinone oxidoreductase
(Fig. 8.2). Despite the common ancestry, the function has changed during evolution
(Gonzalez et al., 1994). This is analogous to a railroad car that has been converted
into a diner: inspection of the exterior structure reveals the structure’s history, but
relying exclusively on this information may lead to an erroneous conclusion about
its current function. When a gene adapts to a new niche, it might also be anticipated
that the pattern of conserved positions would change. For example, active site resi-
dues should be conserved so long as the protein plays a role in catalysis but could
drift once the protein takes on a different function.

The earliest sequence alignment methods were applicable to a simple type of
relationship in which the sequences show easily detectable similarity along their
entire lengths. An alignment that essentially spans the full extents of the input se-
quences is called a global alignment. The trypsin and quinone oxidoreductase/zeta-
crystallin alignments discussed above are both examples of global alignments. Pro-
teins consisting of a single globular domain can often be aligned using a global
strategy as can any homologous sequences that have not diverged substantially.
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Human-zCr MATGQKLMRAVRVFEFGGPEVLKLRSDIAVPIPKDHOVLIKVHACGVNPVETYIRSGTYS
Ecoli-QOR ------ MATRIEFHKHGGPEVLOA-VEFTPADPAENEIQVENKAIGINF IDTYIRSGLYP
. . ******' . ~k ~k * "****** *
Human-ZCr RKPLLPYTPGSDVAGVIEAVGDNASAFKKGDRVFTSSTISGGYAEYALAADHTVYKLPEK
Ecoli-QOR ~PPSLPSGLGTEAAGIVSKVGSGVKHIKAGDRVVYAQSALGAYSSVHNTTADKAATLPAA
* kK *.. ‘k‘k.. * % . * ok k kK * %
Human-zCr LDFKQGAAIGIPYFTAYRALTHSACVKAGESVLVHGASGGVGLAACQIARAYGLKILGTA
Ecoli-QOR ISFEQAAASFLKGLTVYYLLRKTYEIKPDEQFLFHAAAGGVGLIACQWAKALGAKLIGTV
L . * % * .. .* * L *.***** * k% ‘k"k * *"**
Human-ZCr GTEEGQKIVLQONGAHEVFNHREVNY IDKIKKYVGEKGIDI I TEMLANVNLSKDLSLLSHG
Ecoli-QOR GTAQKAQSALKAGAWQVINYREEDLVERLKEI TGGKKVRVVYDSVGRDTWERSLDCLORR
* * * * ok k% *k * *
Human-zCr GRVIVVG-SRGTIEINPRDTMAKES----SIIGVTLFSSTKEEFQQYAAALQAGMEIGIWL
Ecoli-QOR GLMVSFGNSSGAVTGVNLGILNOKGSLYVTRPSLOGY ITTREELTEASNELFSLIASGVI
*x k% ‘k * %
Human-ZCr KPVIGSQ--YPLEKVAEAHENI THGSGATGKMILLL
Ecoli-QOR KVDVAEQQKYPLKDAQRAHE - TLESRATOGSSLLIP

* * kK *kk Kk

Figure 8.2. Optimal global sequence alignment. Alignment of the amino acid sequences
of human zeta-crystallin (SWISS-PROT Q08257) and E. coli quinone oxidoreductase (SWISS-
PROT P28304). It is an optimal global alignment produced by the CLUSTAL W program
(Higgins et al., 1996). Identical residues are marked by asterisks below the alignment, and
dots indicate conserved residues.

THE MODULAR NATURE OF PROTEINS

Many proteins do not display global patterns of similarity but instead appear to be
mosaics of modular domains (Baron et al., 1991; Doolittle and Bork, 1993; Patthy,
1991). One example of this is illustrated in Figure 8.3, which shows the modular
structure of two proteins involved in blood clotting: coagulation factor XII (F12) and
tissue-type plasminogen activator (PLAT). Besides the catalytic domain, which pro-
vides the serine protease activity, these proteins have different numbers of other
structural modules: two types of fibronectin repeats, a domain with similarity to
epidermal growth factor, and a module that is called a ‘“kringle’’ domain. These
modules can be repeated or appear in different orders. Patterns of modularity often
arises by in-frame exchange of whole exons (Patthy, 1991). Global alignment meth-
ods do not take this phenomenon into account, which is understandable considering
that they were developed before the exon/intron structure of genes had been discov-

F12 Catalyti |

PLAT " K Catalyti k

Figure 8.3. Modular structure of two proteins involved in blood clotting. Schematic
representation of the modular structure of human tissue plasminogen activator and co-
agulation factor Xll. A module labeled C is shared by several proteins involved in blood
clotting. F1 and F2 are frequently repeated units that were first seen in fibronectin. E is a
module resembling epidermal growth factor. A module known as a “kringle domain” is
denoted K.
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ered. In most cases, it is advisable to instead use a sequence comparison method
that can produce a local alignment. Such an alignment consists of paired subse-
quences that may be surrounded by residues that are completely unrelated. Conse-
quently, users should bear in mind that some local similarities could be missed if a
global alignment strategy is applied inappropriately. Another obvious case in which
local alignments are desired is the alignment of the nucleotide sequence of a spliced
mRNA to its genomic sequence, where each exon would be a distinct local
alignment.

Dot-matrix representations have enjoyed a widespread popularity, in part because
of their ability to reveal complex relationships involving multiple regions of local
similarity (Fitch, 1969; Gibbs and MclIntyre, 1970). An example of this approach is
shown in Figure 8.4, in which the F12 and PLAT protein sequences have been
compared using dotter (Sonnhammer and Durban, 1996). The basic idea is to use
the sequences as the coordinates of a two-dimensional graph and then plot points of
correspondence within its interior. Each dot usually indicates that, within some small
window, the sequence similarity is above some cutoff (or a range of cutoffs with the
use of dotter, each plotted using a different shade of gray). When two sequences are

Coagulation Factor XII (F12)
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Figure 8.4. Dot matrix sequence comparison. Dot matrix comparison of the amino acid
sequences of human coagulation factor XIl (F12; SWISS-PROT P00748) and tissue plasmin-
ogen activator (PLAT; SWISS-PROT P00750). The figure was generated using the dotter pro-
gram (Sonnhammer and Durban, 1996).

191



192

SEQUENCE ALIGNMENT AND DATABASE SEARCHING

consistently matching over an extended region, the dots will merge to form a diag-
onal line segment. It is instructive to compare the positions of the diagonals in dot-
matrix of Figure 8.4 with the known modular structure of the two proteins. In par-
ticular, note the way in which repeated domains appear: starting with the kringle
domain in the PLAT and scanning horizontally, two diagonal segments may be seen,
corresponding to the two kringle domains present in the F12 sequence. Although
more sophisticated methods for finding local similarities are now available (discussed
below), dot-matrix representations have remained popular as illustrative tools.

In a dot-matrix representation, certain patterns of dots may appear to sketch out
a “path,” but it is up to the viewer to deduce the alignment from this information.
Another graphical representation known as a path graph provides an explicit repre-
sentation of an alignment. Figure 8.5 illustrates the relationship between the dot-
matrix, path graph, and alignment representations for the EGF similarity domain
present in both the tissue-type plasminogen activator (PLAT) and the urokinase-type
plasminogen activator (PLAU) proteins. To understand a path graph, imagine a two-
dimensional lattice in which the vertices represent points between the sequence res-
idues (as opposed to the residues themselves, as in the case of the dot-matrix). An
edge that connects two vertices along a diagonal corresponds to the pairing of one

a b
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PLAU 90 EPKKVKDHCSKHSPCQKGGTCVNMP--SGPH-CLCPQHLTGNHCQKEK---CFE 137
PLAT 23 ELHQVPSNCD----CLNGGTCVSNKYFSNIHWCNCPKKFGGQHCEIDKSKTCYE 72

Figure 8.5. Dot-matrix, path graph, and alignment. All three views represent the align-
ment of the EGF similarity domains in the human urokinase plasminogen activator (PLAU;
SWISS-PROT P00749) and tissue plasminogen activator (PLAT; SWISS-PROT P00750) proteins.
(a) The entire proteins were compared with dotter and an enlargement of the small region
corresponding to the EGF domain is shown here. (b) The path graph representation of the
alignment found by BLASTP. (c) The BLASTpgp alignment represented in the familiar text
form.
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residue from each sequence. Horizontal and vertical edges pair a residue from one
sequence with nothing in the other; in other words, these edges constitute a gap in
the alignment. The entire graph corresponds to the search space, which must be
examined for potential alignments. Each possible path through this space corresponds
to exactly one alignment.

OPTIMAL ALIGNMENT METHODS

For any but the most trivial problems, the total number of distinct alignments is
extraordinarily large, so it is usually of interest to identify the ‘“‘best” one among
them (or the several best ones). This is where the concept of representing an align-
ment as a path pays off. Many problems in computer science can be reduced to the
task of finding the optimal path through a graph (for instance, the problem of finding
the most efficient way to route a telephone call from New York to San Francisco),
and efficient algorithms have been developed for this purpose. One requirement is a
means of assigning a quality score to each possible path (alignment). Normally, this
is accomplished by summing the incremental contributions of each step along its
route. More sophisticated scoring schemes are discussed below, but for now let us
assume that some positive incremental scores will be used for aligning identical
residues, with negative scores used for substitutions and gaps. According to this
definition of alignment quality, finding the path whose total score is maximal will
give us the best sequence alignment.

What is today known as the Needleman-Wunsch algorithm is an application of
a best-path strategy called dynamic programming to the problem of finding optimal
sequence alignments (Needleman and Wunsch, 1970). The basic idea behind dynamic
programming comes from the observation that any partial subpath that ends at a
point along the true optimal path must itself be the optimal path leading up to that
point. Thus, the optimal path can be found by incremental extension of optimal
subpaths. In the basic Needleman-Wunsch formulation, the optimal alignment must
extend from beginning to end in both sequences, that is, from the top-left corner in
the search space to bottom-right (as it is typically drawn). In other words, it seeks
global alignments. A simple modification to the basic strategy allows the optimal
local alignment to be found (Smith and Waterman, 1981). The path for this alignment
does not need to reach the edges of the search graph but may begin and end inter-
nally. Such an alignment would be locally optimal if its score cannot be improved
either by increasing or decreasing the extent of the alignment. The Smith-Waterman
algorithm relies on a property of the scoring system in which the cumulative score
for a path will decrease in regions of poorly matching sequences (the scoring systems
described below satisfy this criterion). When the score drops to zero, extension of
path is terminated and a new one can begin. There can be many individual paths
bounded by regions of poorly matching sequence; the one with the highest score is
reported as the optimal local alignment.

It is important to bear in mind that optimal methods always report the best
alignment that can be achieved, even if it has no biological meaning. On the other
hand, when searching for local alignments there may be several significant align-
ments, so it is a mistake to look only at the optimal one. Refinements to the Smith-
Waterman algorithm were proposed for detecting the k best nonintersecting local
alignments (Altschul and Erickson, 1986; Sellers, 1984; Waterman and Eggert, 1987).
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These ideas were later extended in the development of the SIM algorithm (Huang
et al., 1990). A program called lalign (distributed with the FASTA package) provides
a useful implementation of SIM (Pearson, 1996). Looking for suboptimal alignments
is especially important when comparing multimodule proteins. This is illustrated in
Figure 8.6, in which the lalign program was used to find the three best local align-
ments of the human coagulation factor IX and factor XII proteins. The second and

Comparison of:

(A) f9-human.aa >F9 gi|119772|sp|P00740|FA9_HUMAN COAGULATION FA - 461 aa
(B) fl2-hum.aa >F12  gi|119763|sp|P00748|FA12_HUMAN COAGULATION - 615 aa
using protein matrix

C) 35.4% identity in 254 aa overlap; score: 358

220 230 240 250 260 270
F9 QSFNDFTRVVGGEDAKPGQFPWQVVLNGKVDAFCGGSIVNEKWIVTAAHCVE———TGVKI
Fl2 KSLSSMTRVVGGLVALRGAHPYIAALY WGHSFCAGSLIAPCWVLTAAHCLQDRPAPEDL
370 380 390 400 410 420
280 290 300 310 320 330
F9 TVVAGEHNIEETEHTEQKRNVIRIIPHHNYNAAINKYNHDIALLELDEPL ————— VLNSY
Fl2 TVVLGQERRNHSCEPCQTLAVRSYRLHEAFSPV——SYQHDLALLRLQEDADGSCALLSPY
430 440 450 460 470 480
340 350 360 370 380
F9 VTPICIADKEYTNIFLKFGSGYVSGWGRVFHKGRS ALVLQYLRVPLVDRATCLRSTKF—
Fl2 VQPVCLPSGAARPSETTLCQ——VAGWGHQFEGAEEYASFLQEAQVPFLSLERCSAPDVHG
490 500 510 520 530
390 400 410 420 430 440
F9 fTIYNNMFCAGFHEGGRDSCQGDSGGPHVTEVEGTS777FLTGIISWGEECAMKGKYGIY
Fl2 SSILPGMLCAGFLEGGTDACQGDSGGPLVCEDQAAERRLTLQGIISWGSGCGDRNKPGVY
540 550 560 570 580 590
450
F9 TKVSRYVNWIKEKT
Fl2  TOVAYYLAWIREHT
600 610

C) 34.7% identity in 49 aa overlap; score: 120

100 110 120 130 140
F9 VDGDQCESNPCLNGGSCKDDINSYECWCPFGFEGKNCELDVTCNIKNGR
F12 LASQACRTNPCLHGGRCLEVEGHRLCHCPVGYTGPFCDVDTKASCYDGR
180 190 200 210 220
C) 33.3% identity in 36 aa overlap; score: 87
100 110 120
F9 DQCESN*PCLNGGSCKDDINSYECWCPFGFEGKNCE
F12 DHCSKHSPCQKGGTCVNMPSGPHCLCPQHLTGNHCQ
100 110 120 130

Figure 8.6. Optimal and suboptimal local alignments. The three best alignments found
when using lalignto align the sequences of human coagulation factor IX (F9; SWISS-PROT
900740) and coagulation factor Xl (F12; SWISS-PROT P00748).
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third alignments represent functional modules that would have been missed by a
standard Smith-Waterman search, which would have reported only the first (optimal)
alignment.

SUBSTITUTION SCORES AND GAP PENALTIES

The scoring system described above made use of a simple match/mismatch scheme,
but, when comparing proteins, we can increase sensitivity to weak alignments
through the use of a substitution matrix. It is well known that certain amino acids
can substitute easily for one another in related proteins, presumably because of their
similar physicochemical properties. Examples of these ‘‘conservative substitutions”
include isoleucine for valine (both small and hydrophobic) and serine for threonine
(both polar). When calculating alignment scores, identical amino acids should be
given greater value than substitutions, but conservative substitutions should also be
greater than nonconservative changes. In other words, a range of values is desired.
Furthermore, different sets of values may be desired for comparing very similar
sequences (e.g., a mouse gene and its rat homolog) as opposed to highly divergent
sequences (e.g., mouse and yeast genes). These considerations can be dealt with in
a flexible manner through the use of a substitution matrix, in which the score for
any pair of amino acids can be easily looked up.

The first substitution matrices to gain widespread usage were those based on the
point accepted mutation (PAM) model of evolution (Dayhoff et al., 1978). One PAM
is a unit of evolutionary divergence in which 1% of the amino acids have been
changed. This does not imply that after 100 PAMs every amino acid will be different;
some positions may change several times, perhaps even reverting to the original
amino acid, whereas others may not change at all. If there were no selection for
fitness, the frequencies of each possible substitution would be primarily influenced
by the overall frequencies of the different amino acids (called the background fre-
quencies). However, in related proteins, the observed substitution frequencies (called
the rarget frequencies) are biased toward those that do not seriously disrupt the
protein’s function. In other words, these are point mutations that have been “‘ac-
cepted” during evolution. Dayhoff and coworkers were the first to explicitly use a
log-odds approach, in which the substitution scores in the matrix are proportional to
the natural log of the ratio of target frequencies to background frequencies. To es-
timate the target frequencies, pairs of very closely related sequences (which could
be aligned unambiguously without the aid of a substitution matrix) were used to
collect mutation frequencies corresponding to 1 PAM, and these data were then
extrapolated to a distance of 250 PAMs. The resulting PAM250 matrix is shown in
Figure 8.7. Although PAM?250 was the only matrix published by Dayhoff et al.
(1978), the underlying mutation data can be extrapolated to other PAM distances to
produce a family of matrices. When aligning sequences that are highly divergent,
best results are obtained at higher PAM values, such as PAM200 or PAM250. Ma-
trices constructed from lower PAM values can be used if the sequences have a greater
degree of similarity (Altschul, 1991).

The BLOSUM substitution matrices have been constructed in a similar fashion,
but make use of a different strategy for estimating the target frequencies (Henikoff
and Henikoff, 1992). The underlying data are derived from the BLOCKS database
(Henikoff and Henikoff, 1991), which contains local multiple alignments (“‘blocks’”)
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Figure 8.7. The PAM250 scoring matrix.

involving distantly related sequences (as opposed to the closely related sequences
used for PAM). Although there is no evolutionary model in this case, it is advanta-
geous to have data generated by direct observation, rather than extrapolation. As with
the PAM model, there is a numbered series of BLOSUM matrices, but the number
in this case refers to the maximum level of identity that sequences may have and
still contribute independently to the model. For example, with the BLOSUMG62 ma-
trix, sequences having at least 62% identity are merged into a single sequence, so
that the substitution frequencies are more heavily influenced by sequences that are
more divergent than this cutoff (see Fig. 8.8). Substitution matrices have been con-
structed using higher cutoffs (up to BLOSUMO90) for comparing very similar se-
quences and lower cutoffs (down to BLOSUM30) for highly divergent sequences.
It is desirable to allow some gaps to be introduced into an alignment to com-
pensate for insertions and deletions but not so many that the alignment asserts an
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Figure 8.8. The BLOSUM®62 scoring matrix.

implausible series of molecular alterations. This is accomplished by deducting some
amount from the alignment score for each gap introduced. Although a number of
strategies have been proposed for penalizing gaps, the most common formulation,
known as affine gap penalties, involves a fixed deduction for introducing a gap plus
an additional deduction proportional to the length of the gap. This is governed
by two parameters: G, sometimes called the gap-opening penalty, and L, the gap-
extension penalty. For a gap of length n, the total deduction would be G + Ln.
Unfortunately, the selection of gap parameters is highly empirical; there is little
theory to support the choice of any particular set of values. However, it is common
to use a high value for G (around 10—15, in the context of BLOSUMG62) and a low
value for L (around 1 or 2). The rationale for this is that insertion and mutation
events are rare, but, when they do occur, several adjacent residues may be involved.
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STATISTICAL SIGNIFICANCE OF ALIGNMENTS

For any given alignment, one can calculate a score representing the quality of the
alignment, but an important question is whether or not this score is high enough to
provide evidence of homology. In addressing this question, it is helpful to have some
notion of how high of a score can be expected due purely to chance alone. Unfor-
tunately, there is no mathematical theory to describe the expected distribution of
scores for global alignments. One of the few methods available for assessing their
significance is to compare the observed alignment score with those of many align-
ments made from random sequences of the same length and composition as those
under study (Altschul and Erickson, 1985; Fitch, 1983).

However, for local alignments, the situation is much better. A statistical model
advanced by Karlin and Altschul provides a mathematical theory to describe the
expected distribution of random local alignment scores (Dembo et al., 1984; Karlin
and Altschul, 1990). The form of the probability density function is known as the
extreme value distribution. This is worth noting because application of the more
familiar normal distribution can result in greatly exaggerated claims of significance.
The extreme value distribution is characterized by two parameters, K and A, which
should be tailored for the particular set of alignment scoring rules and residue back-
ground frequencies at hand. Although analytical calculation of these parameters can
currently be done only for alignments that lack gaps, methods have been developed
to estimate appropriate values of K and A for gapped alignments (Altschul and Gish,
1996; Waterman and Vingron, 1994). By relating an observed alignment score S to
the expected distribution, it is possible to calculate statistical significance in the form
of an E value. The simple interpretation of an E value is the number of alignments
with scores at least equal to S that would be expected by chance alone. The signif-
icance of an alignment also depends on the size of the search space that was used;
larger databases produce more chance alignments. The search space has typically
been calculated as the product of the sequence lengths, but, for correct statistics, the
lengths must be reduced by the expected length of a local alignment to avoid an
“edge effect” (Altschul and Gish, 1996). This is due to the fact that an alignment
that begins near the edge of the search space will run out of sequence before it can
achieve a significant score.

DATABASE SIMILARITY SEARCHING

The discussion so far has focused on the alignment of specific pairs of sequences,
but, for a newly determined sequence, one would generally have no way of knowing
the appropriate sequence (or sequences) to use in such a comparison. Database sim-
ilarity searching allows us to determine which of the hundreds of thousands of se-
quences present in the database are potentially related to a particular sequence of
interest. This process sometimes leads to unexpected discoveries. The first “‘eureka
moment’’ with this strategy came when the viral oncogene v-sis was found to be a
modified form of the normal cellular gene that encodes platelet-derived growth factor
(Doolittle et al., 1983; Waterfield et al., 1983). At the time of this discovery, sequence
databases were small enough that such a finding might have been considered sur-
prising. Today, however, it would be much more surprising to perform a database
search and not get a hit. Large numbers of partial sequences representing novel
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human and mouse genes have been deposited in GenBank as a result of a number
of expressed sequence tag projects (see Chapter 12). The genomes of S. cerevisiae,
C. elegans, and D. melanogaster have been completely sequenced, as have many
bacterial and viral genomes. More recently, an intermediate form of the human ge-
nome is now available in the form of a “working draft.”” Given this explosion of
data, the new challenge has become how to focus searches in such a way as to
reduce search times and limit the number of results that must be examined.

In database searching, the basic operation is to sequentially align a query se-
quence to each subject sequence in the database. The results are reported as a ranked
hit list followed by a series of individual sequence alignments, plus various scores
and statistics (e.g., Fig. 8.9). As will be discussed in more detail below, that choice
of search program, sequence database, and various optional parameters can have an

a

The best scores are: initn initl opt z-sc E(59248)
gi|1706794 |sp|P49789 |FHIT_HUMAN FRAGILE HISTIDINE 996 996 996 1350.4 0
gi|1703339|sp|P49776|APHI_SCHPO BIS(5'-NUCLEOSYL) 431 395 395 536.2 2.8e-23
gi|1723425|sp|P49775|YD15_YEAST HYPOTHETICAL 24.8 290 171 316 428.1 2.9e-17
gi|1724021|sp|Q11066|YHIT_MYCTU HYPOTHETICAL 20.0 178 178 184 250.7 2.2e-07
gi|417124|sp|Q04344|HIT_YEAST HIT1 PROTEIN (ORF U 159 104 157 216.2 1.8e-05
gi|418447|sp|P32084 |YHIT_SYNP7 HYPOTHETICAL 12.4 139 139 140 195.0 0.00028
gi|1351828|sp|P47378|YHIT_MYCGE HYPOTHETICAL 15.6 132 132 133 183.9 0.0012
> gi|1169826|sp|P43424 |GAL7_RAT GALACTOSE-1-PHOSPHA 97 97 128 169.7 0.0072
gi|418446|sp|P32083 |YHIT_MYCHR HYPOTHETICAL 13.1 102 102 119 166.8 0.01
gi|1708543 |sp|P49773 |IPK1_HUMAN PROTEIN KINASE C 87 87 118 164.5 0.014
gi|1724020 |sp|P49774 |YHIT _MYCLE HYPOTHETICAL 17.0 131 82 117 161.6 0.02
gi|1724019 |sp|P53795|YHIT CAEEL HYPOTHETICAL HIT- 98 98 116 161.5 0.02
gi|1170581 |sp|P16436|IPK1_BOVIN PROTEIN KINASE C 86 86 115 160.4 0.023
gi[1730188|sp|Q03249 |GAL7_MOUSE GALACTOSE-1-PHOSP 87 87 120 159.3 0.027
gi|1177047 |sp|P42856|ZB14_MAIZE 14 KD ZINC-BINDIN 132 79 112 156.3 0.04
gi 120908\sp\P07902|GAL7 HUMAN GALACTOSE-1-PHOSPH 78 78 117 154.8 0.048
gi|1177046|sp|P42855|ZzB14_BRAJU 14 KD ZINC-BINDIN 115 76 110 154.5 0.05
gi|140775|sp|P26724 | YHIT_AZOBR HYPOTHETICAL 13.2 115 65 109 152.6 0.064
gi|1169825|sp|P31764|GAL7_HAEIN GALACTOSE-1-PHOSP 62 62 104 137.9 0.42
gi|113999|sp|P16550|APAl_YEAST 5',5'''-P-1,P-4-TE 108 66 103 137.1 0.47

b >>gi|1169826|sp|P43424 |GAL7_RAT GALACTOSE-1-PHOSPHATE UR (379 aa)

initn: 97 initl: 97 opt: 128 z-score: 169.7 E(): 0.0072

Smith-Waterman score: 128; 30.8% identity in 107 aa overlap
10 20 30
HIT MSFRFG-QHLIKPSVVFLKTELSFALVNRKPV
ceen Xl Lo R :
GalT VWASNFLPDIAQREERSQQTYHNQHGKPLLLEYGHQELLRKERLVLTSEYWIVLVPFWAV

190 0
40 50 60 70 80

HIT VPGHVLVCPLRPVERFHDLRPDEVADLFQTTQRVGTVVEKHFHGTSLTFSM--QDGP- -~

GalT WPFQTLLLPRRHVQRLPELTPAERDDLASTMKKLLTKYDNLFE-TSFPYSMGWHGAPMGL
25 6

90 100 110 120 130 140
HIT EAGQTVKH--VHVHVLPRKAGDFHRNDSIYEELQKHDKEDF PASWRSEEEMAAEAAALRV

GalT k?gAiﬂcD{{WQ%géﬁw15pLL1§§18TVRKFMVGYEMLAQAQRDLTPEQAAERLRVLPEVHYC
Figure 8.9. Output of a FASTA search. (a) Hit list from a FASTA search with human histidine
triad (HIT) protein (SWISS-PROT P49789) as the query against the swissprot database. The
search was performed using ktup = 1. (b) Optimal local alignment of the query to one of
the database entries (marked by arrow in hit list) containing the sequence of rat galactose-
1-phosphate uridylyltransferase (GalT). Although the sequence similarity is weak, these pro-
teins have been shown to share structural similarity.
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impact on the effectiveness of a search. Furthermore, there are various interfaces to
these facilities such as console-style commands, Web-based forms, and E-mail. Fig-
ure 8.10 shows an example of performing a database search using the BLAST Web
interface. One advantage of this approach is that, for any interesting alignment ob-
served, complete annotation and literature citations can be obtained simply by fol-
lowing hypertext links to the original sequences entries and related on-line literature.

Current sequence databases are immense and have continued to increase at an
exponential rate, making straightforward application of dynamic programming meth-
ods impractical for database searching. One solution is to use massively parallel
computers and other specialized hardware, but, for the purposes of this discussion,
we will consider only what can be done using general-purpose computers. With
optimal methods being impractical, it is necessary to resort to heuristic methods,
which make use of approximations to significantly speed up sequence comparisons,
but with a small risk that true alignments can be missed. One heuristic method is
based on the strategy of breaking a sequence up into short runs of consecutive letters
called words. Word-based methods were introduced in the early 1980s and are used
by virtually all popular search programs in use today (Wilbur and Lipman, 1983).
The basic idea is that an alignment representing a true sequence relationship will
contain at least one word that is common to both sequences. These word hits can
be identified extremely rapidly by preindexing all words from the query and then
consulting the index as the database is scanned.

FASTA

The first widely-used program for database similarity searching was FASTA (Lipman
and Pearson, 1985; Pearson and Lipman, 1988; Pearson, 2000). To achieve a high
degree of sensitivity, this program performs optimized searches for local alignments
using a substitution matrix. However, as noted above, it would take a substantial
amount of time to apply this strategy exhaustively. To improve speed, the program
uses the observed pattern of word hits to identify potential matches before attempting
the more time-consuming optimized search. The trade-off between speed and sen-
sitivity is controlled by the kfup parameter, which specifies the size of a word.
Increasing the value of kfup decreases the number of background word hits (i.e.,
those that do not mark the position of an optimal alignment). This, in turn, decreases
the amount of optimized searching required and improves overall search speed. The
default kfup value for comparing proteins is 2, but, for finding very distant relation-
ships, it is recommended that it be reduced to 1.

The FASTA program does not investigate every word hit encountered, but instead
looks initially for segments containing several nearby hits. By using a heuristic
method, these segments are assigned scores and the score of the best segment found
appears in the output as the init1 score (Figure 8.9a). Several segments may then
be combined and a new initn score is calculated from the ensemble. Most potential
matches are then further evaluated by performing a search for a gapped local align-
ment that is constrained to a diagonal band centered around the best initial segment.
The score of this optimized alignment is shown in the output as the opt score. For
those alignments finally reported (a user-specified number from the top of the hit
list), a full Smith-Waterman alignment search (without the constraining band) is
performed. An example, of such an alignment is shown in Figure 8.9b. It should be
noted that only the single optimal alignment is produced for each database sequence.
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Figure 8.10. Database similarity search on the World Wide Web. The figure illustrates the
use of the NCBI BLAST Web front end. The query sequence should be pasted from the
clipboard into the large text field (where the sequence of U43746 is shown in this figure).
Other essential elements of the search are the name of the search program and the da-
tabase, both of which may be selected from drop-down lists. Additional optional param-
eters may be set if desired. In addition to this “Advanced BLAST” form, there is also a “Basic
BLAST"” form in which the advanced options are hidden. In either case, simply press the

Submit Query button to begin the search.
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As pointed out above, meaningful alignments can be missed by this approach if the
proteins contain multiple modules. Consequently, it is recommended that matching
sequences be further analyzed with the lalign program.

Beginning with version 2.0, FASTA provides an estimate of the statistical sig-
nificance of each alignment found. The program assumes an extreme value distri-
bution for random scores but with the use of a rewritten form of the probability
density function in which the expected score is a linear function of the natural log
of the length of the database sequence. Simple linear regression can then be used to
calculate a normalized Z-score for each alignment. Finally, an expectation E is cal-
culated, which gives the expected number of random alignments with Z-scores
greater than or equal to the value observed.

BLAST

The BLAST programs introduced a number of refinements to database searching that
improved overall search speed and put database searching on a firm statistical foun-
dation (Altschul et al., 1990). One innovation introduced in BLAST is the idea of
neighborhood words. Instead of requiring words to match exactly, a word hit is
achieved if the word taken from the subject sequence has a score of at least 7 when
a comparison is made using a substitution matrix to the word from the query. This
strategy allows the word size (W) to be kept high (for speed) without sacrificing
sensitivity. Thus, 7 becomes the critical parameter determining speed and sensitivity
and W is rarely varied. If the value of T is increased, the number of background
word hits will go down and the program will run faster. Reducing 7" allows more
distant relationships to be found.

The occurrence of a word hit is followed by an attempt to find a locally optimal
alignment whose score is at least equal to a score cutoff S. This is accomplished by
iteratively extending the alignment both to the left and to the right, with accumulation
of incremental scores for matches, mismatches, and the introduction of gaps. In
practice, it is more convenient to specify an expectation cutoff £, which the program
internally converts to an appropriate value of S (which would depend on the search
context). In regions where matching residues are scarce, the cumulative score will
begin to drop. As the mismatch and gap penalties mount, it becomes less likely that
the score will rebound and ultimately reach S. This observation provides the basis
for an additional heuristic whereby the extension of a hit is terminated when the
reduction in score (relative to the maximum value encountered) exceeds the score
dropoff threshold X. Using smaller values of X improves performance by reducing
the time spent on unpromising hit extensions, at the expense of occasionally missing
some true alignments.

There are several variants of BLAST, each distinguished by the type of sequence
(DNA or protein) of the query and database sequences (see Table 8.1). The BLASTP
program compares a protein query to a protein database. The corresponding program
for nucleotide sequences is BLASTN. If the sequence types differ, the DNA sequence
can be translated by the program (in all six reading frames) and compared to the
protein sequence. BLASTX compares a DNA query sequence to the protein database,
which is useful for analyzing new sequence data and ESTs. For a protein query
against a nucleotide database, use the TBLASTN program. This is useful for finding
unannotated coding regions in database sequences. A final variant is used only in
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TABLE 8.1. BLAST Programs

Program Query Database Comments

BLASTP Protein Protein Uses substitution matrix for finding
distant relationships; SEG
filtering available

BLASTN Nucleotide Nucleotide Tuned for very high-scoring
matches, not distant relationships
BLASTX Nucleotide Protein Useful for analysis of new DNA
(translated) sequences and ESTs
TBLASTN Protein Nucleotide Useful for finding unannotated
(translated) coding regions in database
sequences
TBLASTX Nucleotide Nucleotide May be useful for EST analysis, but
(translated) (translated) computationally intensive

specialized situations but is mentioned here for the sake of completeness: TBLASTX
takes DNA query and database sequences, translates them both, and compares them
as protein sequences. This program is mainly useful for comparisons of ESTs, where
it is suspected that sequences may have coding potential even though the exact
coding region has not been determined.

All of these programs make use of sequence databases located on server ma-
chines, which obviates the need for any local database maintenance. Some protein
and nucleotide sequences databases currently available from the NCBI for BLAST
searching are listed in Tables 8.2 and 8.3. For routine searches, the nr database
provides comprehensive collections of both amino acid and nucleotide sequence data,
with redundancy reduced by merging sequences that are completely identical. To
examine all sequences submitted or updated within the last 30 days, a database called
month is provided. Both nr and month are updated on a daily basis. Several other
databases listed in Tables 8.2 and 8.3 are useful in more specialized situations, such
as comparing against the complete genomes of model organisms (ecoli or yeast),
searching specific classes of sequences (est or sts), or testing for the presence of
contaminating or otherwise problematic sequences (vector, alu, or mito).

TABLE 8.2. Protein Sequence Databases for use with BLAST

Database Description

nr Non-redundant merge of SWISS-PROT, PIR, PRF, and proteins derived from
GenBank coding sequences and PDB atomic coordinates

month Subset of nr which is new or modified within the last 30 days

swissprot The SWISS-PROT database

pdb Amino acid sequences parsed from atomic coordinates of three-dimensional
structures

ecoli Complete set of proteins encoded by the E. coli genome

yeast Complete set of proteins encoded by the S. cerevisiae genome

drosoph Complete set of proteins encoded by the D. melanogaster genome
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TABLE 8.3. Nucleotide Sequence Databases for use with BLAST

Database Description

nr Nonredundant GenBank, excluding the EST, STS, and GSS divisions
month Subset of nr, which is new or modified within the last 30 days
est GenBank EST division (expressed sequence tags)

sts GenBank STS division (sequence tagged sites)

htgs GenBank HTG division (high-throughput genomic sequences)
gss GenBank GSS division (genome survey sequences)

ecoli Complete genomic sequence of E. coli

yeast Complete genomic sequence of S. cerevisiae

drosoph Complete genomic sequence of D. melanogaster

mito Complete genomic sequences of vertebrate mitochondria

alu Collection of primate Alu repeat sequences

vector Collection of popular cloning vectors

An example of a BLAST search will serve to introduce various elements of a
search output. For the example in Figure 8.11, the amino acid sequence of one of
the Alzheimer’s disease susceptibility proteins (conceptual translation of GenBank
L43964) was used as the query in a TBLASTX search of the est database. One goal
of such a search would be to identify cDNA clones for potential homologs in model
organisms, thereby opening the door for experimental studies that would not be
practical in humans (the clones corresponding to EST sequences are readily avail-
able). Each of the EST sequences in the database is translated in all reading frames
before they are compared against the Alzheimer’s protein sequence. Figure 8.11a
shows the hit list produced by this search. The first two columns give the identifiers
and descriptions for each sequence having a significant match. Although the defini-
tions are truncated in this overview, the figures shows that sequences from both
mouse and Drosophila are represented. The next column gives the reading frame
that produced the best alignment (although there may be hits to translations from
other frames as well). The next three columns provide the score of the best alignment,
the sum P-value, and the number of HSPs that were used in the P-value calculation.
The alignment involving one of the Drosophila ESTs (marked by the arrow) is shown
in Figure 8.11b. There are actually two alignments involved, and scores are provided
for each. In each case, the conceptual translation of the EST is shown aligned with
the query sequence. Identical amino acids are echoed to the text line in between the
sequences, and plus (+) symbols are used to indicate nonidentical residues that have
positive substitution scores (i.e., conservative substitutions). It is noteworthy that the
two alignments arise from different reading frames and are adjacent to one another,
as can be seen from the sequence coordinates. This pattern is indicative of a reading
frame error in the EST sequence. When analyzing sequence single-pass data, it is
extremely useful to have tools that are relatively error tolerant.

DATABASE SEARCHING ARTIFACTS

A query sequence that contains repetitive elements is likely to produce many false
and confounding database matches. One clue that this may be a problem is the
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Reading High
Sequences producing High-scoring Segment Pairs: Frame Score
agb AA056325\AA056325 zf53a03.s1 Soares retina N2b4HR H... +3 724
gb T03796|T03796 IB913 Infant brain, Bento Soares +3 567
agb AA260597\AA260597 mx769g09.r1 Soares mouse NML Mus m... +2 239
gb |HB86456 |HB86456 yt01lb06.s1l Homo sapiens cDNA clon... +2 323
gb |N24576 |[N24576 yx72a04.s1 Homo sapiens cDNA clon... +1 365
gb|AA265273 |AA265273 mx91cl2.rl Soares mouse NML Mus m... +2 239
gb|AA237206 |AA237206 mx18e0l.rl Soares mouse NML Mus m... +3 159
gb|R14600|R14600 v£34b10.rl Homo sapiens cDNA clon... +1 278
gb|AA200706 |[AA200706 mu03fl2.rl Soares mouse 3NbMS Mus... +1 343
gb |AA045064 |AA045064 zk77f12.s1 Soares pregnant uterus... -3 269
gb|AA087434 |AA087434 mm28a04.rl Stratagene mouse skin ... +3 322
agb R05907|R05907 ve93h02.rl Homo sapiens cDNA clon... +3 252
gb|AA268820|AA268820 vb0lclO.rl Soares mouse NML Mus m... +2 234
gb|AA162310|AA162310 mn44al07.rl Beddington mouse embry... +1 134
gb N27820|N27820 yx54h10.r1 Homo sapiens cDNA clon... +3 154
gb |AA234907|AA234907 zs38f03.rl1l Soares NhHMPu S1 Homo +2 155
gb|AA231081 |AA231081 mwlldll.rl Soares mouse 3NMEl2 5 ... +3 134
gb|H91652 |H91652 yvs80c04.s1 Homo sapiens cDNA clon... -3 215
gb|H50532 |H50532 yo30h08.sl1 Homo sapiens cDNA clon... -2 211
gb|AA150236|AA150236 z103c0l.rl Soares pregnant uterus... +1 159
gb|AA144382|AA144382 mrl15dl2.rl Soares mouse 3NbMS Mus... +3 159
> gb|AA390557 |[AA390557 LD09473.5prime LD Drosophila Embr... +3 130
gb|AA210480 |AA210480 mo86b03.rl Beddington mouse embry... +2 128
gb H19012|H19012 ym44b02.rl Homo sapiens cDNA clon... +2 134
gb |AA283084|AA283084 zt14g09.sl Soares NbHTGBC Homo sa... -3 175
gb|H25759 |H25759 v149d01.s1 Homo sapiens cDNA clon... -2 185
gb|H33787 |H33787 EST110123 Rattus sp. cDNA 5' end ... +1 137
gb|AA201988|AA201988 LD05058.5prime LD Drosophila Embr... +3 175
gb|AA263526 |AA263526 LD06652.5prime LD Drosophila Embr... +1 167
gb|R46340|R46340 vj52c04.s1 Homo sapiens cDNA clon... -1 151
gb|AA246675|AA246675 LD05588.5prime LD Drosophila Embr... +2 117
gb |AA282899 |AA282899 zt14g09.rl1l Soares NbHTGBC Homo sa... +3 118
gb|AA247705|AA247705 csh0941.seq.F Human fetal heart, +3 56
b gb|AA390557|AA390557 LD09473.5prime LD Drosophila Embryo Drosophila
melanogaster cDNA clone LD09473 5
Length = 659
Score = 130 (60.4 bits), Expect = 1.6e-20, Sum P(2) = 1.6e-20
Identities = 25/60 (41%), Positives = 40/60 (66%), Frame = +3

Query:

Sbjct:

+I S+ FY

Score = 117 (54.3 bi
Identities = 23/30 (

Query:

Sbjct:

Smallest
Sum

Probability

P(N)

2

.4e-102
.6e-78
.9e-53
.3e-52
.5e-47
Lde-41
.5e-40
.5e-40
.9e-40
.3e-37
.6e-37
.7e-37
.7e-35
.3e-34
.8e-29
.8e-28
.8e-23
.7e-22
.2e-21
.0e-21
.6e-21
.6e-20
.0e-20
.9e-20
.3e-19
.0e-18
.7e-17
.5e-15
.0e-14
.6e-13
.8e-10
.1le-07
.0039
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105 TIKSVRFYTEKNGQLIYTTFTEDTPSVGQRLLNSVLNTLIMISVIVVMTIFLVVLYKYRC 164

+ L+YT F E +P + +++ ++LI++SV+VVMT L+VLYK RC

ts

), Expect
76%), Positives = 27/30 (90%), Frame

= 1.6e-20, Sum P(2) = 1.6e-20

75 LEEELTLKYGAKHVIMLFVPVTLCMIVVVA 104

+EEE LKYGA+HVI LFVPV+LCM+VVVA

391 MEEEQGLKYGAQHVIKLFVPVSLCMLVVVA 480

+1

480 SINSISFYNSTDVYLLYTPFHEQSPEPSVKFWSALGSSLILMSVVVVMTFLLIVLYKKRC 659

Figure 8.11. Output of a TBLASTN search. The protein product of the Alzheimer’s disease

susceptibility gene (GenBank L43964) was used as the query in a TBLASTN search against
the est database. The goal was to identify cDNA clones from other organisms that may

represent homologs of the human gene. (a) Portion of the hit list showing the 25 best hits.
Each sequence is identified by GenBank accession number and a portion of the definition
line. The reading frame and score of the best HSP are shown, together with the sum

probability of a chance occurrence. The value in the last column gives the number of HSPs

that were used in the sum probability calculation. At least 10 sequences from mouse and

one from Drosophila may be seen on the hit list. (b) Match to the conceptual translation
of the Drosophila EST sequence (GenBank AA390557). Two HSPs were found, each in a
different reading frame. Identical residues are echoed to the central line, and plus (+)
symbols indicate pairs of nonidentical amino acids with positive substitution scores.
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finding of significant matches to repeat “warning sequences’’ that have been included
in both GenBank and SWISS-PROT. These entries are consensus sequences (Or trans-
lations thereof) for different subfamilies of human Alu repeats. However, with the
large amount of human genomic sequence now present in the database, it is common
to have many hits to individual repeats with scores greater than those for any con-
sensus repeat. Consequently, hits to Alu-warning entries are less striking than when
the database was smaller. Other indications of likely artifacts would be finding hits
to many proteins that seem to have no functional relationship to one another or hits
to genomic sequences from many different chromosomes. These patterns might also
be seen if both query and database are contaminated with foreign sequences from
the same source, for instance, cloning vectors.

Although it is always good practice to critically evaluate database search results
and be suspicious of artifacts when the data don’t make sense, a more proactive
approach involves masking problematic sequences in the query before doing the
search. The problem of repetitive elements is ably handled by the popular program
RepeatMasker, which identifies, classifies, and masks several types of repetitive el-
ements and simple repeats (A. F. A. Smit and P. Green, unpublished). A masking
strategy strategy, which we will call “hard masking,” is to replace subsequences
with an ambiguity character (‘““N”’ for nucleotide sequences or “X” for proteins).
Alternatively, a ‘“‘soft-masking” approach, in which the resides are instead converted
to lowercase letters, may be used with certain search programs. Because ambiguous
residues are treated as mismatches (even when aligned to themselves), hard-masking
effectively prohibits the identified repeats from making a positive contribution to the
alignment score. Although hard masking is excellent for avoiding false hits, the fact
that even the true alignments may be altered can present problems, particularly when
alignment scores and lengths are used classify alignments. The solution to this di-
lemma is to use soft masking. Recent versions of the BLAST programs have an
option that ignores regions of the query sequence that are lowercase when construct-
ing the word dictionary. However, an alignment that is initiated in unique sequence
may be extended through a repeat and would have the same alignment score as it
would with unmasked sequence. With RepeatMasker, the —xsmall command-line
option may be used for soft masking.

Both proteins and nucleic acids contain regions of biased composition, which
can lead to confusing database search results. These low-complexity regions (LCRs)
range from the obvious homopolymeric runs and short-period repeats to the more
subtle cases where one or a few different residues may be overrepresented. Alignment
of LCR-containing sequences is problematic because they do not fit the model of
residue-by-residue sequence conservation. In some cases, the functionally relevant
attributes may be only the periodicity or composition and not any specific sequence.
Furthermore, methods for assessing the statistical significance of alignments are
based on certain notions of randomness which LCRs do not obey. Consequently,
many false positives may be observed in the output of a database search with an
LCR-containing query sequence because the significance of matches can be over-
estimated (Altschul et al., 1994).

A program called seg has been developed to partition a protein sequence into
segments of low and high compositional complexity (Wootton and Federhen, 1996;
Wootton and Federhen, 1993). Using this program, it has been shown that more than
half of the proteins in the database contain at least one LCR (Wootton, 1994; Wootton
and Federhen, 1993). The evolutionary, functional, and structural properties of LCRs
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are not well understood. Perhaps LCRs arise by such mechanisms as polymerase
slippage, biased nucleotide substitution, or unequal crossing-over. In proteins, LCRs
are likely to exist structurally as nonglobular regions. Regions that have been defined
physicochemically as nonglobular are usually identified correctly using seg (Wootton,
1994). In DNA, there are many classes of satellite and microsatellite sequences that
consist of many copies of a simple repeat unit.

The protein product of the human homolog of the Drosophila achaete-scute gene
provides a good example of an LCR-containing protein. When analyzed with seg,
two regions of low compositional complexity were identified. Figure 8.12a shows

>gi|1703441|sp|P50553 |ASH1_HUMAN ACHAETE-SCUTE HOMOLOG 1

1-11 MESSAKMESGG
agagpapapagpflppaacffataaaaaaa 12-72
aaaaaagsagqgdaaaaaaaaaaaapglrpa
a

73-119 DGQPSGGGHKSAPKQVKRQRSSSPELMRCK
RRLNFSGFGYSLPQQQP
aavarrnerernrv 120-133
134-238 KLVNLGFATLREHVPNGAANKKMSKVETLR
SAVEYIRALQQLLDEHDAVSAAFQAGVLSP
TISPNYSNDLNSMAGSPVSSYSSDEGSYDP
LSPEEQELLDFTNWF

>gi|1703441|sp|P50553 |ASH1_HUMAN ACHAETE-SCUTE HOMOLOG 1
MESSAKMESGG:
XXXKXKXKXKXXKXDGOPSGGGHKSAPKQVKRQORSSSPELMRCKRRLNF SGFGY SLPQOQPX
XXXXKXXKXXKXXXKLVNLGFATLREHVPNGAANKKMSKVETLRSAVEY IRALQOLLDEHD
AVSAAFQAGVLSPTISPNYSNDLNSMAGSPVSSYSSDEGSYDPLSPEEQELLDFTNWE

>gi|540240 (U14590) achaete-scute homolog b [Danio rerio]
Length = 195

Score = 193 bits (512), Expect = 7e-49
Identities = 107/155 (69%), Positives = 118/155 (76%)
Gaps = 8/155 (5%)

QUERY 86  KQVKRQRSSSPELMRCKRRLNFSGFGYSLPQQOPXXXXXXXXXXXXXXKLVNLGFATLRE 145
K +KRQRSSSPEL+RCKRRL F+G GY++PQQQP K VN+GF TLR+

540240 32  KVLKRQRSSSPELLRCKRRLTFNGLGYTIPQQQPMAVARRNERERNRVKQVNMGFQTLRQ 91

QUERY 146 HVPNGAANKKMSKVETLRSAVEYIRALQQLLDEHDAVSAAFQAGVLSPTISPNYSNDLNS 205
HVPNGAANKKMSKVETLRSAVEYIRALQQLLDEHDAVSA Q GV SP++S YS

540240 92  HVPNGAANKKMSKVETLRSAVEYIRALQQLLDEHDAVSAVLOCGVPSPSVSNAYS----- 146

QUERY 206 MAG--SPVSSYSSDEGSYDPLSPEEQELLDFTNWEF 238

AG SP S+YSSDEGSY+ LS EEQELLDFT WF
540240 147 -AGPESPHSAYSSDEGSYEHLSSEEQELLDFTTWF 180

Figure 8.12. Identifying low-complexity regions with SEG. Analysis of the human achaete-
scute protein (SWISS-PROT P50553) using seg reveals two regions of low compositional
complexity. (a) Program output in the default “tree” format shows the low-complexity
sequences in lower-case letters on the left and high-complexity in upper-case on the right.
(b) Using the -x command-line switch, the seg program will generate a version of the
sequence in which the low-complexity sequences have been masked. (c) For convenience,
the BLAST programs can be instructed to perform the masking automatically. When a
masked query sequence is used in a database search, some of the alignments may contain
masked segments, as shown in this BLASTP output.
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the default ““tree’” output, in which the low-complexity sequences are shown in low-
ercase letters on the left and the high-complexity sequences in uppercase on the
right. The first region is a 61-residue segment containing homopolymeric tracts of
glutamine and alanine. The second is a 14-residue segment with a bias toward ar-
ginine. Without filtering, many database sequences with biased regions involving
these amino acids would be reported. Using a command-line option, seg can generate
the masked version of the sequence for use as a search query (Figure 8.12b). Alter-
natively, filtering can be performed automatically by the BLAST programs through
the use of optional parameters. Note that, in some implementations of BLAST, such
as the Web version, filtering may be enabled by default.

POSITION-SPECIFIC SCORING MATRICES

In a standard substitution matrix, such as BLOSUMG62, the substitution of one amino
acid with another is associated with a single score—an obvious simplification given
that the same amino acid may have different conservation patterns in one context
than another in accordance with differing roles in biological function. Database
searches can be tailored to find specific proteins families or domains through the use
of substitution scores that reflect the substitution frequencies of each individual
amino acid position in a domain. There is a large literature on the construction and
application of these position-specific scoring matrices (PSSMs), which may also be
called hidden Markov models (HMMs), motifs, or profiles (Bucher et al., 1996;
Gribskov et al., 1987; Schneider et al., 1986; Staden, 1988; Tatusov et al., 1994). In
its simplest form, a PSSM consists of a set of 20 substitution scores at each position
along the motif—one for each of the amino acids. Amino acids that are commonly
found at a particular position receive higher scores, whereas lower scores correspond
to amino acids unlikely to appear at that position. It is also possible to assign scores
to insertions and deletions in a position-specific manner.

A commonly used software package, HMMER (Eddy et al., 1995), contains a
set of related programs for constructing and using PSSMs. Given a multiple align-
ment of several related proteins (e.g., one made using CLUSTAL W), the hmmbuild
program may be used to calculate the position-specific scores and save it to a file
(HMM file format). Using the hmmsearch program, the HMM file may be used as
a query against a sequence database. Conversely, hmmpfam is used to compare a
single query sequence against a database of PSSMs (HMMs). A comprehensive da-
tabase of protein domains, Pfam (Bateman et al., 2000), is often used for this purpose.

The power of PSSMs in database searches can be further enhanced by iterative
approaches in which the highest scoring matches in one search are incorporated into
a PSSM used in successive searches. Position-Specific Iterated BLAST (PSI-BLAST)
provides an automated facility for constructing, refining, and searching PSSMs within
the context of a single program. Starting with a query sequence provided by the
user, the process begins with a standard BLASTP search of a sequence database.
Highly significant alignments found in this search are then used to construct a PSSM
on-the-fly. Comparisons of the PSSM against the sequence database are performed
using a variation of the word-based BLAST algorithm used for standard sequence
comparisons. The process continues until no new matches are found or a specified
limit on number of iterations is reached.

To demonstrate the improved sensitivity of the PSI-BLAST approach, the se-
quence of histidine triad (HIT) protein was used as a database search query. Simi-
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High E

Sequences producing significant alignments: Score Value
Pass 1:

sp|P49789 |FHIT HUMAN FRAGILE HISTIDINE TRIAD PROTEIN 290 7e-79
sp|P49776 |APH1_SCHPO BIS(5'-NUCLEOSYL)-TETRAPHOSPHATASE (ASYMME... 117 8e-27
sp|P49775|YD15_YEAST HYPOTHETICAL 24.8 KD HIT-LIKE PROTEIN 88.0 6e-18
sp|Q11066 | YHIT MYCTU HYPOTHETICAL 20.0 KD HIT-LIKE PROTEIN 52.7 3e-07
sp|Q04344 |HIT_YEAST HIT1 PROTEIN (ORF U) 45.3 4e-05
Pass 2:

sp|P47378| YHIT_MYCGE HYPOTHETICAL 15.6 KD HIT-LIKE PROTEIN 70.5 le-12
sp|P32083 | YHIT_MYCHR HYPOTHETICAL 13.1 KD HIT-LIKE PROTEIN IN P... 59.0 3e-09
sp|P26724 | YHIT_AZOBR HYPOTHETICAL 13.2 KD HIT-LIKE PROTEIN IN H... 57.6 9e-09
sp|P32084 | YHIT_SYNP7 HYPOTHETICAL 12.4 KD HIT-LIKE PROTEIN IN P... 55.7 3e-08
sp|P53795 | YHIT_CAEEL HYPOTHETICAL HIT-LIKE PROTEIN F21C3.3 54.3 9e-08
sp|P42856|ZB14_MAIZE 14 KD ZINC-BINDING PROTEIN (PROTEIN KINASE... 52.8 2e-07
sp|P42855|ZB14_BRAJU 14 KD ZINC-BINDING PROTEIN (PROTEIN KINASE... 50.2 1le-06
sp|P49774 | YHIT_MYCLE HYPOTHETICAL 17.0 KD PROTEIN HIT-LIKE PROT... 49.5 2e-06
sp|P49773 | IPK1_HUMAN PROTEIN KINASE C INHIBITOR 1 (PKCI-1) 49.1 3e-06
sp|P16436 | IPK1_BOVIN PROTEIN KINASE C INHIBITOR 1 (PKCI-1) (17 ... 48.7 4e-06
sp|P44956 | YCFF_HAEIN HYPOTHETICAL HIT-LIKE PROTEIN HI0961 47.3 1e-05
sp|P43424 |GAL7_RAT GALACTOSE-1-PHOSPHATE URIDYLYLTRANSFERASE 41.0 8e-04
Pass 3:

sp|Q03249|GAL7_MOUSE GALACTOSE-1-PHOSPHATE URIDYLYLTRANSFERASE 87.2 le-17
sp|P07902 |GAL7_HUMAN GALACTOSE-1-PHOSPHATE URIDYLYLTRANSFERASE 79.8 2e-15
sp|P31764|GAL7_HAEIN GALACTOSE-1-PHOSPHATE URIDYLYLTRANSFERASE 64.7 6e-11
sp|P09148|GAL7_ECOLI GALACTOSE-1-PHOSPHATE URIDYLYLTRANSFERASE 62.5 3e-10
sp|P22714|GAL7_SALTY GALACTOSE-1-PHOSPHATE URIDYLYLTRANSFERASE 58.1 6e-09
sp|P09580|GAL7_KLULA GALACTOSE-1-PHOSPHATE URIDYLYLTRANSFERASE 48.5 4e-06
sp|P08431|GAL7_YEAST GALACTOSE-1-PHOSPHATE URIDYLYLTRANSFERASE 40.8 0.001
Pass 4:

sp|P40908|GAL7_CRYNE GALACTOSE-1-PHOSPHATE URIDYLYLTRANSFERASE 71.0 8e-13
sp|P13212|GAL7_STRLI GALACTOSE-1-PHOSPHATE URIDYLYLTRANSFERASE 57.0 1le-08

Figure 8.13. Increased sensitivity using PSI-BLAST. The human histidine triad (HIT) protein
(SWISS-PROT P49789) was used as the query in a BLASTP search with the PSI-BLAST func-
tionality enabled. Definition lines, scores, and E values are shown for all statistically signif-
icant matches newly identified in each iteration.

larity between HIT and galactose-1-phosphate uridylyltransferase (GalT) has recently
been described based on superimposition of their three-dimensional structures (Holm
and Sander, 1997). However, sequence similarity between these two proteins is ex-
tremely weak. With a standard (single-pass) BLASTP search, no significant hits to
GalT sequences are observed. However, with a multipass search, new relationships
are discovered at each iteration, as shown in Figure 8.13. The rat GalT protein is
found in the second iteration and, after information from this alignment is incorpo-
rated into the profile, several additional homologs from other organisms are also
identified.

SPLICED ALIGNMENTS

The identification of genes within long stretches of DNA sequence is a central prob-
lem for automatic annotation of complete genomes. For the very compact genomes
of viruses and bacteria, this work amounts to little more than the enumeration of
open reading frames. However, gene identification in eukaryotic genomes is signif-
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icantly more challenging because of the larger amount of intergenic sequence and
the fact that protein-coding regions may be interrupted by introns. The two funda-
mental strategies seek to identify genes using either the intrinsic signals in the DNA
sequence (see Chapter 10) or alignments to mRNA and protein sequences.

At first glance, the problem of aligning mRNA and genomic sequences seems
trivial—using a local alignment strategy each exon would come out as a separate
locally optimal alignment separated by large ‘deletions’ in the mRNA sequence cor-
responding to the introns that have been spliced out. If the goal is merely to obtain
a crude sense of how a gene is organized, a simple alignment is sufficient. However,
for the purpose of genome annotation, it is important that all exons be found with
precise endpoints or a correct protein translation cannot be obtained. The sim4 pro-
gram is designed to address genome annotation needs by performing mRNA/genomic
alignments rapidly and accurately (Florea et al., 1998). It begins with a BLAST-like
search for finding the obvious exons—those with very high alignment scores—and
follows this with search at lower stringency to identify any missed (usually short)
exons. Splice donor and acceptor signals in the genomic sequences are used to adjust
the exon boundaries (see Fig. 8.14). To avoid problems caused by tandemly repeated
genes, an additional constraint is imposed to require that the order of the exons found
in the genome match that implied by the mRNA. Other programs available for per-
forming mRNA/genomic alignments are est_genome (Mott, 1997) and the est2gen
program from the Wise package (Birney et al., 1996).

It should be noted that an mRNA sequence may align perfectly well to a pseu-
dogene and that such an alignment may be difficult to distinguish from a functional
gene. Certain features may be indicative of retropseudogenes, that is those resulting
from integration of a reverse-transcribed mRNA. For example, a poly(A) tract found
in the genomic sequence at the 3’ end of the gene is indicative of a pseudogene
produced through an mRNA intermediate. Such an mRNA alignment will also lack
the large gaps corresponding to introns, although this alone cannot be used to con-
clude that it is a retropseudogene because there many authentic genes that consist
of a single exon. However, once all mRNA alignments have been generated for a
genome, one strategy for retropseudogene identification involves looking for pairs
of highly similar alignments in which one lacks and the other contains introns. Other
types of pseudogenes may arise by gene duplication events followed by inactivation
of one of the copies. Such cases can be very difficult to diagnose. Programs that
perform mRNA/genomic alignments usually do not use any knowledge of reading
frame; therefore, determining that a potential gene contains a frameshift will require
subsequent analysis of the protein translations. In the case of genes predicted by
alignment with ESTs only, the protein-coding sequence is not known so any inter-
ruptions of the reading frame will not be apparent. The possibility that an apparent
frame shift may actually be a sequencing error in the genomic sequence should also
be considered, particularly in the analysis of a working draft sequence. In many
cases, determining whether an mRNA-predicted gene is a functional gene or a pseu-
dogene must await experimental validation.

CONCLUSIONS

Sequence alignment and database searching are performed tens of thousands of times
per day by scientists around the world and represent critical techniques that all mo-
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Figure 8.14. Spliced alignment. The sim4 program was used to align a novel human mRNA
(RefSeq NM_015372) to the genomic sequence of a cosmid from chromosome 22 (EMBL
782248). Three exons were identified on the complementary strand (the third one has been
truncated for brevity). The “>>>" symbols indicate splice sites found at the exon/intron

boundaries.

15628-15745) 100% ->
(22863-23062) 100% ->
(26529-27457) 100%

CCCCAGGCGTGGGAAGATGGAACCAGAACAATTCGAACGAGCAGAGCAAA

CCCCAGGCGTGGGAAGATGGAACCAGAACAATTCGAACGAGCAGAGCAAA

ACAGATCGGAATTGCAGACTTCAGGTCGTGGCAGAGAAAACCAGCTGAGA

ACAGATCGGAATTGCAGACTTCAGGTCGTGGCAGAGAAAACCAGCTGAGA

CAGGGCGCCACTTACTAG CTCTGAAAGTCTAGGATATTTTG

LETULELLTELEEE T >>> e ee>>> LT

CAGGGCGCCACTTACTAGGTG. . . CAGCTCTGAAAGTCTAGGATATTTTG

CCACTGGAAGACCAGCAGACAATGTCATGACAACTCAAGAGGATACAACA

CCACTGGAAGACCAGCAGACAATGTCATGACAACTCAAGAGGATACAACA

GGGCTGCATCAAAAGACAAGTCTTTGGACCATGTCAAGACCTGGAGCGAA

GGGCTGCATCAAAAGACAAGTCTTTGGACCATGTCAAGACCTGGAGCGAA

GAAGGTAATGAACTCCTACTTCATAGCAGGCTGTGGGCCAGCAGTTTGCT

GAAGGTAATGAACTCCTACTTCATAGCAGGCTGTGGGCCAGCAGTTTGCT

ACTACGCTGTCTCTTGGTTAAGGCAAG GTTTCAGTATCAAC

CEELLEEEELLEE L L LTI >>> e ee>>> L]

ACTACGCTGTCTCTTGGTTAAGGCAAGGTC. . . CAGGTTTCAGTATCAAC

CTGACTTCTTTTGGAAGGATCCCTTGGCCTCACGCTGGAGTGGGCACCTG

GACTTCTTTTGGAAGGATCCCTTGGCCTCACGCTGGAGTGGGCACCTG

CAGA TCTCCCTTTCTTCAATCACACAGGGAGC

CCTTTCTTCAATCACACAGGGAGC

ouput truncated for brevity
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lecular biologists should be familiar with. It can be expected that these methods will
continue to evolve to meet the challenges of an ever-increasing database size. This
chapter has described some of the fundamental concepts involved, but it is useful to
consult the documentation of the various programs for more detailed information.
Researchers should have a basic understanding of how the programs work so that
parameters can be intelligently selected. In addition, they should be aware of poten-
tial artifacts and know how to avoid them. Above all, it is important to apply the
same powers of observation and critical evaluation that are used with any experi-
mental method.

INTERNET RESOURCES FOR TOPICS PRESENTED IN CHAPTER 8

BLAST http://mcbi.nlm.nih.gov/BLAST/

CLUSTAL W ftp://ftp.ebi.ac.uk/pub/software/

dotter ftp://ftp.sanger.ac.uk/pub/dotter/

FASTA, lalign Jtp:/fftp.virginia.edu/pub/fasta/

hmmer http://hmmer.wustl.edu/

RepeatMasker http://ftp.genome.washington.edu/RM/RepeatMasker. html
seg ftp://ncbi.nlm.nih.gov/pub/seg/

sim4 http://globin.cse.psu.edu

Wise package http://www.sanger.ac.uk/Software/Wise2/

PROBLEM SET

1. What is the difference between a global and a local alignment strategy?

2. Calculate the score of the DNA sequence alignment shown below using the fol-
lowing scoring rules: +1 for a match, —2 for a mismatch, — 3 for opening a gap,
and — 1 for each position in the gap.

GACTACGATCCGTATACGCACA--GGTTCAGAC

GACTACGAGCCGTATACGCACACAGGTTCAGAC

3. If a match from a database search is reported to have a E-value of 0.0, should it
be considered highly insignificant or highly significant?
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INTRODUCTION

When a protein sequence is newly-determined, an important goal is to assign possible
functions to the protein. The first computational step is to search for similarities with
sequences that have previously been deposited in the DNA and protein sequence
databases. If similar sequences are found, they may match the complete length of
the new sequence or only to subregions of the sequence. If more than one similar
sequence is found, then the next important step in the analysis is to multiply align
all of the sequences. Multiple alignments are a key starting point for the prediction
of protein secondary structure, residue accessibility, function, and the identification
of residues important for specificity. Multiple alignments also provide the basis for
the most sensitive sequence searching algorithms (cf. Gribskov et al., 1987; Barton
and Sternberg, 1990; Attwood et al., 2000). Effective analysis of a well-constructed
multiple alignment can provide important clues about which residues in the protein
are important for function and which are important for stabilizing the secondary and
tertiary structures of the protein. In addition, it is often also possible to make pre-
dictions about which residues confer specificity of function to subsets of the
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sequences. In this chapter, some guidelines are provided toward the generation and
analysis of protein multiple sequence alignments. This is not a comprehensive review
of techniques; rather, it is a guide based on the software that have proven to be most
useful in building alignments and using them to predict protein structure and func-
tion. A full summary of the software is available at the end of the chapter.

WHAT IS A MULTIPLE ALIGNMENT, AND WHY DO IT?

A protein sequence is represented by a string a of letters coding for the 20 different
types of amino acid residues. A protein sequence alignment is created when the
residues in one sequence are lined up with those in at least one other sequence.
Optimal alignment of the two sequences will usually require the insertion of gaps in
one or both sequences in order to find the best alignment. Alignment of two residues
implies that those residues are performing similar roles in the two different proteins.
This allows for information known about specific residues in one sequence to be
potentially transferred to the residues aligned in the other. For example, if the active
site residues of an enzyme have been characterized, alignment of these residues with
similar residues in another sequence may suggest that the second sequence possesses
similar catalytic activity to the first. The validity of such hypotheses depends on the
overall similarity of the sequences, which in turn dictate the confidence with which
an alignment can be generated. There are typically many millions of different pos-
sible alignments for any two sequences. The task is to find an alignment that is most
likely to represent the chemical and biological similarities between the two proteins.

A multiple sequence alignment is simply an alignment that contains more than
two sequences! Even if one is interested in the similarities between only two of the
sequences in a set, it is always worth multiply-aligning all available sequences. The
inclusion of these additional sequences in the multiple alignment will normally im-
prove the accuracy of the alignment between the sequence pairs, as illustrated in
Figure 9.1, as well as revealing patterns of conserved residues that would not have
been obvious when only two sequences are directly studied. Although many pro-
grams exist that can generate a multiple alignment from unaligned sequences, ex-
treme care must be taken when interpreting the results. An alignment may show
perfect matching of a known active-site residue with an identical residue in a well-
characterized protein family, but, if the alignment is incorrect, any inference about
function will also be incorrect.

STRUCTURAL ALIGNMENT OR EVOLUTIONARY ALIGNMENT?

It is the precise arrangement of the amino acid side chains in the three-dimensional
structure of the protein that dictates its function. Comparison of two or more protein
three-dimensional structures will highlight which residues are in similar positions in
space and hence likely to be performing similar functional roles. Such comparisons
can be used to generate a sequence alignment from structure (e.g., see Russell and
Barton, 1992). The structural alignment of two or more proteins is the gold standard
against which sequence alignment algorithms are normally judged. This is because
it is the structural alignment that most reliably aligns residues that are of functional
importance. Unfortunately, structural alignments are only possible when the three-
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Improvement in Alignment Accuracy on Multiple Alignment
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Figure 9.1. Histogram showing difference in accuracy between the same pairs of se-
quences aligned as a pair and as part of a larger multiple sequence alignment. On average,
multiple alignments improve the overall alignment accuracy, which, in this example, is
judged as the alignment obtained by comparison of the three-dimensional structures of
the individual proteins rather than just their sequences (Russell and Barton, 1992).

dimensional structures of all the proteins to be aligned are known. This is not usually
the case; therefore, the challenge for sequence alignment methods is to get as close
as possible to the structural alignment without knowledge of structure. Although the
structural alignment is the most important alignment for the prediction of function,
it does not necessarily correspond to the evolutionary alignment implied by diver-
gence from a common ancestor protein. Unfortunately, it is rarely possible to deter-
mine the evolutionary alignment of two divergent proteins with confidence because
this would require knowledge of the precise history of substitutions, insertions, and
deletions that have led to the creation of present-day proteins from their common
ancestor.

HOW TO MULTIPLY ALIGN SEQUENCES

Automatic alignment programs such as CLUSTAL W (Thompson et al., 1994) will
give good quality alignments for sequences that are more than 60 similar (Barton
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and Sternberg, 1987). However, building good multiple alignments for sequences
that are not trivially similar is a precise task even with the best available alignment
tools. This section gives an overview of some of the steps to go through to make
alignments that are good for structure/function predictions. This is not a universal
recipe; in fact, there are very few universal recipes in bioinformatics in general. Each
set of sequences presents its own biologically based problems, and only experience
can guide the creation of high-quality alignments. Some collections of expertly cre-
ated multiple alignments exist (described later), and these should always be consulted
when studying sequences that are present there. The key steps in building a multiple
alignment are as follows.

¢ Find the sequences to align by database searching or by other means.

* Locate the region(s) of each sequence to include in the alignment. Do not try
to multiply align sequences that are substantially different in length. Most
multiple alignment programs are designed to align sequences that are similar
over their entire length; therefore, a necessary first step is to edit the sequences
down to those regions that sequence database searches suggest are similar.

 Ideally, assess the similarities within the set of sequences by comparing them
pairwise with randomizations. Select a subset of the sequences to align first
that cluster above 60. Automatic alignment of such sequences are likely to be
accurate (Barton and Sternberg, 1987). An alternative to doing randomization
is to align only sequences that are similar to the query in a database search,
say with an E-value of <I.

* Run the multiple alignment program.

e Manually inspect the alignment for problems. Pay particular attention to
regions that appear to be speckled with gaps. Use an alignment visualization
tool (e.g., ALSCRIPT/JalView, see below) to identify positions in the align-
ment that show conserved physicochemical properties across the complete
alignment. If there are no such regions, then look at subsets of the sequences.

* Remove sequences that appear to disrupt the alignment seriously and then
realign the remaining subset.

* After identifying key residues in the set of sequences that are straightforward
to align, attempt to add the remaining sequences to the alignment so as to
preserve the key features of the family.

Assessing Quality of Alignment

Multiple alignment programs will align any set of sequences. However, the fact that
the program produces an alignment does not mean that the alignment has any bio-
logical meaning. Most programs will take unrelated protein sequences and align them
just as easily as two genuinely related sequences. Even for related sequences, there
is no guarantee that the resulting alignment is in any way meaningful. One way of
assessing whether an alignment is meaningful is to perform a randomization or
“Monte Carlo” test of significance. To do this, the two sequences are first aligned
and the score (S) for the alignment is recorded. The sequences are then shuffled so
that they maintain their length and amino acid composition but have a randomized
order. The shuffled sequences are then compared again, and the score is recorded.
The shuffling and realigning process is repeated a number of times (typically 100),
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and the mean and standard deviation (o) for the scores are calculated. The Z-score
provides an indication of the significance of the alignment. If Z > 6, then it is highly
likely that the two sequences are alignable, and the alignment correctly relates the
key functional and structural residues in the individual proteins to one another (Bar-
ton and Sternberg, 1987). Unfortunately, this can only be a rough guide. An align-
ment that gives a Z < 6 may be poor, and some alignments with low Z-scores are
actually correct. This is simply a reflection of the fact that, during evolution, sequence
similarity has diverged faster than structural or functional similarity. Z-scores are
preferable to simple percent identities as a measure of similarity because it corrects
for both compositional bias in the sequences as well as accounting for the varying
lengths of sequences. The Z-score, therefore, gives an indication of the overall sim-
ilarity between two sequences. Although it is a powerful measure, it does not help
to locate parts of the sequence alignment that are incorrect. As a general rule, if the
alignment is between two or more sequences that do indeed share a similar three-
dimensional structure, then the majority of errors will be concentrated around regions
where there are gaps (insertions/deletions).

Hierarchical Methods

The most accurate, practical methods for automatic multiple alignment are hierar-
chical methods. These work by first finding a guide tree and then following the guide
tree to build the alignment. The process is summarized in Figure 9.2. First, all pairs
of sequences in the set to be aligned are compared by a pairwise method of sequence
comparison. This provides a set of pairwise similarity scores for the sequences that
can be fed into a cluster analysis or tree calculating program. The tree is calculated
to place more similar pairs of sequences closer together on the tree than sequences
that are less similar. The multiple alignment is then built by starting with the pair of
sequences that is most similar and aligning them and then aligning the next most
similar pair, and so on. Pairs to be aligned need not be single sequences but can be
alignments that have been generated earlier in the tree. If an alignment is compared
with a sequence or another alignment, then gaps that exist in the alignment are
preserved. There are many different variations of this basic multiple alignment tech-
nique. Because errors in alignment that occur early in the process can get locked in
and propagated, some methods allow for realignment of the sequences after the initial
alignment (e.g., Barton and Sternberg, 1987; Gotoh, 1996). Other refinements include
using different similarity scoring matrices at different stages in building up the align-
ment (e.g., Thompson et al., 1994). Gaps (insertions/deletions) do not occur randomly
in protein sequences.

Since a stable, properly-folded protein must be maintained, proteins with an
insertion or deletion in the middle of a secondary structure (a-helix or B-strand) are
usually selected against during the course of evolution. As a consequence, present-
day proteins show a strong bias toward localizing insertions and deletions to loop
regions that link the core secondary structures. This observation can be used to
improve the accuracy of multiple sequence alignments when the secondary structure
is known for one or more of the proteins in practice by making the penalty for
inserting a gap higher when in secondary structure regions than when in loops (Bar-
ton and Sternberg, 1987; Jones, 1999. A further refinement is to bias where gaps are
most likely to be inserted in the alignment by examining the growing alignment for
regions that are most likely to accommodate gaps (Pascarella and Argos, 1992).
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CLUSTAL W and Other Hierarchical Alignment Software

CLUSTAL W combines a good hierarchical method for multiple sequence alignment
with an easy-to-use interface. The software is free, although a contribution to de-
velopment costs is required when purchasing the program. CLUSTAL W runs on
most computer platforms and incorporates many of the techniques described in the
previous section. The program uses a series of different pair-score matrices, biases
the location of gaps, and allows you to realign a set of aligned sequences to refine
the alignment. CLUSTAL W can read a secondary structure ‘“‘mask’ and bias the
positioning of gaps according to it; the program can also read two preexisting align-
ments and align them to each other or align a set of sequences to an existing align-
ment. CLUSTAL W also includes options to calculate neighbor-joining trees for use
in inferring phylogeny. Although CLUSTAL W does not provide general tools for
viewing these trees, the output is compatible with the PHYLIP package (Felsenstein,
1989) and the resultant trees can be viewed with that program. CLUSTAL W can
read a variety of different common sequence formats and produce a range of different
output formats. The manual for CLUSTAL W is clearly written and explains possible
limitations of the alignment process. Although CLUSTAL W can be installed and
run locally, users can also access it through a faster Web service via the EBI server
by clicking the “Tools page”. With the exception of manual editing and visualization,
CLUSTAL W contains most of the tools that are needed to build and refine a multiple
sequence alignment. When combined with JalView, as described below, the process
of building and refining a multiple alignment is greatly simplified. Although CLUS-
TAL W is probably the most widely used multiple alignment program and for most
purposes is adequate, other software exists having functionality not found in CLUS-
TAL W. For example, AMPS (Barton, 1990) provides a pairwise sequence compar-
ison option with randomization, allowing Z-scores to be calculated. The program can
also generate alignments without the need to calculate trees first. For large numbers
of sequences, this can save a lot of time because it eliminates the need to perform
all pairwise comparisons of the sequences. AMPS also has software to visualize trees,
thus helping in the selection of sequences for alignment. However, the program has
no simple menu interface; therefore, it is more difficult for the novice or occasional
user to use.

More Rigorous Nonhierarchical Methods

Hierarchical methods do not guarantee finding the one mathematically optimal mul-
tiple alignment for an entire set of sequences. However, in practice, the mathematical
optimum rarely makes any more biological sense than the alignment that is found
by hierarchical methods. This is probably because a great deal of effort has gone
into tuning the parameters used by CLUSTAL W and other hierarchical methods to
produce alignments that are consistent with those that a human expert or three-
dimensional structure comparison might produce. The widespread use of these tech-
niques has also ensured that the parameters are appropriate for a wide range of
alignment problems. More rigorous alignment methods that attempt to find the math-
ematically optimal alignment over a set of sequences (cf. Lipman et al., 1989) may
be capable of giving better alignments, but, as shown in recent benchmark studies,
they are, on average, no better than the hierarchical methods.
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Multiple Alignment by PSI-BLAST

Multiple sequence alignments have long been used for more sensitive searches of
protein sequence databases than is possible with a single sequence. The program
PSI-BLAST (Altschul et al., 1997) has recently made these profile methods more
easily available. As part of its search, PSI-BLAST generates a multiple alignment.
However, this alignment is not like the alignments made by CLUSTAL W, AMPS,
or other traditional multiple alignment tools. In a conventional multiple alignment, all
sequences in the set have equal weight. As a consequence, a multiple alignment will
normally be longer than any one of the individual sequences, since gaps will be
inserted to optimize the alignment. In contrast, a PSI-BLAST multiple alignment is
always exactly the length of the query sequence used in the search. If alignment of
the query (or query profile) to a database sequence requires an insertion in the query,
then the inserted region from the database sequence is simply discarded. The re-
sulting alignment thus highlights the amino acids that may be aligned to each position
in the query. Perhaps for this reason, PSI-BLAST multiple alignments and their
associated frequency tables and profiles have proved very effective as input for pro-
grams that predict protein secondary structure (Jones, 1999; Cuff and Barton, 2000).

Multiple Protein Alignment From DNA Sequences

Although most DNA sequences will have translations represented in the EMBL-
TrEMBL or NCBI-GenPept databases, this is not true of single-pass EST sequences.
Because EST data are accumulating at an exponential pace, an automatic method of
extracting useful protein information from ESTs has been developed. In brief, the
ProtEST server (Cuff et al., 1999) searches EST collections and protein sequence
databases with a protein query sequence. EST hits are assembled into species-specific
contigs, and an error-tolerant alignment method is used to correct probable sequenc-
ing errors. Finally, any protein sequences found in the search are multiply aligned
with the translations of the EST assemblies to produce a multiple protein sequence
alignment. The JPred server (version 7.3) will generate a multiple protein sequence
alignment when presented with a single protein sequence by searching the SWALL
protein sequence database and building a multiple alignment. The JPred alignments
are a good starting point for further analysis with more sensitive methods.

TOOLS TO ASSIST THE ANALYSIS OF MULTIPLE ALIGNMENTS

A multiple sequence alignment can potentially consist of several hundred sequences
that are 500 or more amino acids long. With such a volume of data, it can be difficult
to find key features and present the alignments in a form that can be analyzed by
eye. In the past, the only option was to print out the alignment on many sheets of
paper, stick these together, and then pore over the massive poster with colored high-
lighter pens. This sort of approach can still be useful, but it is rather inconvenient!
Visualization of the alignment is an important scientific tool, either for analysis or
for publication. Appropriate use of color can highlight positions that are either iden-
tical in all the aligned sequences or share common physicochemical properties.
ALSCRIPT (Barton, 1993) is a program to assist in this process. ALSCRIPT takes
a multiple sequence alignment and a file of commands and produces a file in
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Figure 9.3. Example output from the program ALSCRIPT (Barton, 1993). Details can be
found within the main text.

PostScript format suitable for printing out or viewing with a utility such as ghostview.
Figure 9.3 illustrates a fragment of ALSCRIPT output (the full figure can be seen
in color in Roach et al., 1995). In this example, identities across all sequences are
shown in white on red and boxed, whereas positions with similar physicochemical
properties are shown black on yellow and boxed. Residue numbering according to
the bottom sequence is shown underneath the alignment. Green arrows illustrate the
location of known B-strands, whereas a-helices are shown as black cylinders. Further
symbols highlight specific positions in the alignment for easy cross-referencing to
the text. ALSCRIPT is extremely flexible and has commands that permit control of
font size and type, background coloring, and boxing down to the individual residue.
The program will automatically split a large alignment over multiple pages, thus
permitting alignments of any size to be visualized. However, this flexibility comes
at a price. There is no point-and-click interface, and the program requires the user
to be familiar with editing files and running programs from the command line. The
ALSCRIPT distribution includes a comprehensive manual and example files that
make the process of making a useful figure for your own data a little easier.

Subalignments—AMAS

ALSCRIPT provides a few commands for calculating residue conservation across a
family of sequences and coloring the alignment accordingly. However, it is really
intended as a display tool for multiple alignments rather than an analysis tool. In
contrast, AMAS (Analysis of Multiply Aligned Sequences; Livingstone and Barton,
1993) is a program for studying the relationships between sequences in a multiple
alignment to identify possible functional residues. AMAS automatically runs AL-
SCRIPT to provide one output that is a boxed, colored, and annotated multiple
alignment.

Why might you want to run AMAS? A common question one faces is, “Which
residues in a protein are important for its specificity?”” AMAS can help identify these
residues by highlighting similarities and differences between subgroups of sequences
in a multiple alignment. For example, given a family of sequences that shows some
variation, positions in a multiple alignment that are conserved across the entire family
of sequences are likely to be important to stabilize the common fold of the protein
or common functions. Positions that are conserved within a subset of the sequences,
but different in the rest of the family, are likely to be those important to the specific
function or specificity of that subset, and these positions can be easily identified
using AMAS. There are a number of subtle types of differences that AMAS will
search for, and these are summarized in Figure 9.4. To use AMAS, one must first
have an idea of what subgroups of sequences exist in a multiple alignment of interest.
One way to do this is to take a tree generated from the multiple alignment and
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identify clusters of sequences at some similarity threshold. This is also illustrated in
Figure 9.4, in which three groups have been selected on the basis of the tree shown
at the top left. Alternatively, if one knows in advance that finding common features
and differences between, for example, sequences 1-20 and 21-50 in a multiple
alignment is important, one can specify these ranges explicitly. The output of AMAS
is a detailed text summary of the analysis as well as a colored and shaded multiple
sequence alignment. By default, AMAS searches for general features of amino acid
physicochemical properties. However, this can be narrowed down just to a single
feature of amino acids such as charge. An example of a charge analysis is shown in
Figure 9.5 for repeats within the annexin supergene family of proteins (Barton et al.,
1991). The analysis highlights a charge swap within two subgroups of the sequences,
correctly predicting the presence of a salt bridge in the native folded protein (Huber
et al., 1990). The AMAS program may either be downloaded and run locally, or a
subset of its options can be accessed over the Web at a server hosted by EBI.

Secondary Structure Prediction and the Prediction of Buried
Residues From Multiple Sequence Alignment

When aligning sequences, it is important to remember that the protein is a three-
dimensional molecule and not just a string of letters. Predicting secondary structure
either for the whole collection of sequences or subsets of the sequences can be used
to help discover how the protein might fold locally and guide the alignment of more
distantly related sequences. For example, it is common for proteins with similar
topologies to have quite different sequences and be unalignable by an automatic
alignment method (e.g., see Russell and Barton, 1994; ¢f. the SCOP database, see
Murzin et al., 1995, Chapter 5). In these circumstances, the secondary structure may
suggest which blocks of sequences should be equivalent. The prediction of secondary
structure (a-helix and B-strand) is enhanced by around 6% when performed from a
multiple alignment, compared with prediction from a single sequence (Cuff and

Figure 9.4. Stylized output from the program AMAS. The sequence alignment has been
shaded to illustrate similarities within each subgroup of sequences. Conservation numbers
(Livingstone and Barton, 1993; Zvelebil et al., 1987) run from 0 to 10 and provide a nu-
merical measure of the similarity in physicochemical properties of each column in the align-
ment. Below the alignment, the lines “Similar Pairs” show the conservation values obtained
when each pair of subgroups is combined and the combined conservation number is not
less than a threshold. For example, at position 7, subgroups A and B combine with a con-
servation number of 9. The lines “Different Pairs” illustrate positions at which a combina-
tion of subgroups lowers the conservation number below the threshold. For example, at
position 3, there is an identity in subgroup B and one in C, but, when the groups are
combined, the identity is lost and the conservation drops below the threshold of 8 to 7. A
summary of the similarities and differences is given as a frequency histogram. Each upward
bar represents the proportion of subgroup pairs that preserve conservation, whereas each
downward bar shows the percentage of differences. For example, at position 6, 3/3 pairs
are conserved (100%), whereas at positions 3 and 8, 1/3 pairs show (33%) differences With
a large alignment, the histogram can quickly draw the eye to regions that are highly con-
served or to regions where there are differences in conserved physicochemical properties.
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Figure 9.5. lllustration of an AMAS output used to find a charge pair in the annexins.
There are four groups of sequences in the alignment. The highlighted positions highlight
locations where the charge is conserved in each group of sequences yet different between
groups. A change from glutamine to arginine is shown at position 1.

Barton 1999). The best current methods [PSIPRED (Jones, 1999) and JNET (Cuff
and Barton, 2000)] give over 76% accuracy for the prediction of three states (a-
helix, B-strand, and random coil) in rigorous testing. This high accuracy is possible
because the prediction algorithms are able to locate regions in the sequences that
show patterns of conserved physicochemical properties across the aligned family.
These patterns are characteristic of particular secondary structure types and can often
be seen by eye in a multiple sequence alignment, as summarized below:

 Short runs of conserved hydrophobic residues suggest a buried B-strand.

e i, i+2,and i + 4 patterns of conserved hydrophobic amino acids suggest a
surface (-strand, since the alternate residues in a strand point in the same
direction. If the alternate residues all conserve similar physicochemical prop-
erties, then they are likely to form one face of a B-strand.

e i,i+3,i+ 4,and i + 7, and variations of that pattern, (e.g., i, i + 4, i +
7) of conserved residues suggest an a-helix with one surface facing the solvent.

* Insertions and deletions are normally only tolerated in regions not associated
with the buried core of the protein. Thus, in a good multiple alignment, the
location of indels suggests surface loops rather than a-helices or B-strands.
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* Although glycine and proline may be found in all secondary structure types,
a glycine or proline residue that is conserved across a family of sequences is
a strong indicator of a loop.

Secondary structure prediction programs such as JNET (Cuff and Barton, 2000) and
PHD (Rost and Sander, 1993) also exploit multiply aligned sequences to predict the
likely exposure of each residue to solvent. Knowledge of solvent accessibility can
help in the identification of residues key to stabilizing the fold of the protein as well
as those that may be involved in binding. Both the JNET and PHD programs may
be run from the JPred prediction server, whereas JNET may also be run from within
JalView. [For further discussion of methods used to predict secondary structure, the
reader is referred to Chapter 11.]

JalView

AMAS and ALSCRIPT are not interactive: they run a script or set of commands and
produce a PostScript file, which can be viewed on-screen using a Postscript viewer
or just printed out. Although this provides the maximum number of options and
flexibility in its display, it is comparatively slow and sometimes difficult to learn. In
addition, the programs require a separate program to be run to generate the multiple
alignment for analysis. If the alignment requires modification or subsets of the align-
ment are needed, a difficult cycle of editing and realigning is often required. The
program JalView overcomes most of these problems. JalView encapsulates many of
the most useful features of AMAS and ALSCRIPT in an interactive, mouse-driven
program that will run on most computers with a Java interpreter. The core of JalView
is an interactive alignment editor. This allows an existing alignment to be read into
the program and individual residues or blocks of residues to be moved around. A
few mouse clicks permit the sequences to be subset into a separate copy of JalView.
JalView can call CLUSTAL W (Thompson et al., 1994) either as a local copy on
the same computer that is running JalView or the CLUSTAL W server at EBI. Thus,
one can also read in a set of unaligned sequences, align them with CLUSTAL W,
edit the alignment, and take subsets with great ease. Further functions of JalView
will calculate a simple, neighbor-joining tree from a multiple alignment and allow
an AMAS-style analysis to be performed on the subgroups of sequences. If
the tertiary structure of one of the proteins in the set is available, then the three-
dimensional structure may be viewed alongside the alignment in JalView. In addi-
tion, the JNET secondary structure prediction algorithm (Cuff and Barton, 2000)
may be run on any subset of sequences in the alignment and the resulting prediction
displayed along with the alignment. The JalView application is available for free
download and, because it is written in Java, can also be run as an applet in a Web
browser such as Netscape or Internet Explorer. Many alignment services such as the
CLUSTAL W server at EBI and the Pfam server include JalView as an option to
view the resulting multiple alignments. Figure 9.6 illustrates a typical JalView session
with the alignment editing and tree windows open.

COLLECTIONS OF MULTIPLE ALIGNMENTS

This chapter has focused on methods and servers for building multiple protein se-
quence alignments. Although proteins that are clearly similar by the Z-score measure
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Figure 9.6. An example JalView alignment editing and analysis session. The top panel
contains a multiple alignment, and the bottom left is the similarity tree resulting from that
alignment. A vertical line on the tree has separated the sequences into subgroups, which
have been colored to highlight conservation within each subgroup. The panel at the bot-
tom right illustrates an alternative clustering method.

should be straightforward to align by the automatic methods discussed here, getting
good alignments for proteins with more remote similarities can be a very time-
consuming process. A number of groups have built collections of alignments using
a combination of automation and expert curation [e.g., SMART (Schultz et al., 1998),
Pfam (Bateman et al., 1999), and PRINTS (Attwood et al., 2000)], and these, together
with the tools available at their Web sites, can provide an excellent starting point
for further analyses.

INTERNET RESOURCES FOR TOPICS PRESENTED IN CHAPTER 9

CLUSTAL W ftp://ftp.ebi.ac.uk/pub/software

AMAS http://barton.ebi.ac.uk/servers/amas.html
JPred http://barton.ebi.ac.uk/servers/jpred. html
ProtEST http://barton.ebi.ac.uk/servers/protest. html
JalView http://barton.ebi.ac.uk/mew/software.html
AMPS http://barton.ebi.ac.uk/new/software.html

European Bioinformatics Institute http://www.ebi.ac.uk
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PROBLEM SET

The following problems are based on the annexin supergene family, the same family
used throughout the discussion in this chapter. This family contains a 100 amino
acid residue unit that repeats either four, eight, or 16 times within each protein. The
analysis required below will focus on the individual repeat units, rather than the
organization of the repeat units within the full-length protein sequences.

The problems will require the use of CLUSTAL W and Jalview, which you may
have to install (or have installed) on a UNIX- or Linux-based system to which you
have access. The files referred to below are available on the book’s Web site.

The file ann_repl . fa contains the sequence of a single annexin domain. This
sequence has been used as the query against the SWALL protein sequence database,
using the program scanps to make the pairwise sequence comparisons. A partial
listing of the results can be found in the file named ann_repl_frags. fa.

Generation of a Multiple Sequence Alignment

1. Copy the file ann_repl__frags. fa to a new directory.

2. Run CLUSTAL W on ann_repl_frags. fa. Accept all defaults, and create
an output file called ann_repl__frags.aln.

3. Pass this output file to Jalview by typing Jalview ann_repl_frags.aln
CLUSTAL.

4. Select the fragment sequences by clicking on the ID code. Select Delete Selected
Sequences from the Edit menu.

5. Save the modified alignment to a CLUSTAL-formatted file called ann_repl __
frags_dell.aln.

6. Select Average Distance Tree from the Calculate menu. A new window will now
appear, and after a few moments, a tree (dendrogram) will be rendered within
that window. There should be outliers at the very top of that tree, and these outliers
will need to be eliminated.

7. Click on the tree to the left of where the outliers join the tree. A vertical line
should now appear, and the outliers will be highlighted in a different color.

8. Return to the Alignment window and delete the outliers from the alignment, in
the same way as was done in Step 4. Save the resulting alignment to a file named
ann_repl_frags_del2.aln.

This series of steps produces a “‘clean alignment” for inspection. Positions within
the alignment can be colored in different ways to highlight certain features of the
amino acids within the alignment. For example, selecting Conservation from the
Calculate menu will shade each column on the basis of the relative amino acid
conservation seen at that particular position in the alignment. By doing so, it im-
mediately becomes apparent which parts of the protein may lie within regions of
secondary structure. Examine the area around positions 60 to 70 of the alignment;
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the pattern observed should be two conserved, two unconserved, and two conserved
residues, a parttern that is characteristic of an alpha-helix.

Select Jnet from the Align menu. This will return a secondary structure prediction
based on the alignment. Alternatively, the alignment file can be submitted to the
JPRED?2 server at EBI. In order to submit the alignment to the JPRED2 server, the
alignment must first be saved in MSF format (ann_repl_frags_del2.msf).
Either of these methods should corroborate that there is an alpha-helical region in
the area around residues 60-70.

By ‘“cleaning” the alignment in this way, information about sequences (and
sequences themselves) has been discarded. It is advisable to always save files at
intermediate steps: the clean alignment will be relatively easy to interpret, but the
results of the intermediate steps will have information about the parts of the align-
ment requiring more thought.

Subfamily Analysis

The following steps will allow a subfamily analysis to be performed on the annexin
family. The input file is ideal _annexins.als.

1. Start Jalview and read in the alignment file by typing ideal _annexins.blc
BLC.

2. Select Average Distance Tree from the Calculate menu. The resultant tree will
have four clear clusters with one outlier. Click on the tree at an appropriate
position to draw a vertical line and highlight the four clusters.

3. Return to the Alignment window. Select Conservation from the Calculate menu.
The most highly-conserved positions within each subgroup of sequences will be
colored the brightest. Examine the alignment, and identify the charge-pair shown
as an example in this Chapter. Selecting either the Taylor or Zappo color schemes
may help in identifying the desired region.

4. Submit the file ideal _annexins.blc to the AMAS Web server. On the Web
page, paste the contents of ideal _annexins.blc into the Alignment win-
dow, then paste the contents of the file ideal _annexins.grp into the Sen-
sible Groups window. The server should return results quickly, providing links to
a number of output files. The Pretty Output file contains the PostScript alignment,
which should be identical to 1deal _annexins_amas.ps provided here.
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With the announcement of the completion of a ‘““working draft” of the sequence of
the human genome in June 2000 and the Human Genome Project targeting the com-
pletion of sequencing in 2002, investigators will be faced with the challenge of
developing a strategy by which they can deal with the oncoming flood of both
unfinished and finished data, whether the data are generated in their own laboratories
or at one of the major sequencing centers. These data undergo what can best be
described as a maturation process, starting as single reads off of a sequencing ma-
chine, passing through a phase where the data become part of an assembled (yet
incomplete) sequence contig, and finally ending up as part of a finished, completely
assembled sequence with an error rate of less than one in 10,000 bases. Even before
such sequencing data reach this highly polished state, investigators can begin to ask
whether or not given stretches of sequence represent coding or noncoding regions.
The ability to make such determinations is of great relevance in the context of
systematic sequencing efforts, since all of the data being generated by these projects
are, in essence, ‘“‘anonymous’’ in nature—nothing is known about the coding poten-
tial of these stretches of DNA as they are being sequenced. As such, automated
methods will become increasingly important in annotating the human and other ge-
nomes to increase the intrinsic value of these data as they are being deposited into
the public databases.

In considering the problem of gene identification, it is important to briefly go
over the basic biology underlying what will become, in essence, a mathematical
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problem (Fig. 10.1). At the DNA level, upstream of a given gene, there are promoters
and other regulatory elements that control the transcription of that gene. The gene
itself is discontinuous, comprising both introns and exons. Once this stretch of DNA
is transcribed into an RNA molecule, both ends of the RNA are modified, capping
the 5’ end and placing a polyA signal at the 3’ end. The RNA molecule reaches
maturity when the introns are spliced out, based on short consensus sequences found
both at the intron-exon boundaries and within the introns themselves. Once splicing
has occurred and the start and stop codons have been established, the mature mRNA
is transported through a nuclear pore into the cytoplasm, at which point translation
can take place.

Although the process of moving from DNA to protein is obviously more complex
in eukaryotes than it is in prokaryotes, the mere fact that it can be described in its
entirety in eukaryotes would lead one to believe that predictions can confidently be
made as to the exact positions of introns and exons. Unfortunately, the signals that
control the process of moving from the DNA level to the protein level are not very
well defined, precluding their use as foolproof indicators of gene structure. For ex-
ample, upward of 70% of the promoter regions contain a TATA box, but, because
the remainder do not, the presence (or absence) of the TATA box in and of itself
cannot be used to assess whether a region is a promoter. Similarly, during end mod-
ification, the polyA tail may be present or absent or may not contain the canonical

Exon1 lIntron1 |Exon2 lintron2 |Exon3 |lIntron 3 | Exon 4

l Transcription

RNA D T 0 T

l End Modification

l Splicing

Mature
mRNA cap

Nucleus

Cytoplasm
Translation

polyA

Figure 10.1. The central dogma. Proceeding from the DNA through the RNA to the pro-
tein level, various sequence features and modifications can be identified that can be used
in the computational deduction of gene structure. These include the presence of promoter
and regulatory regions, intron-exon boundaries, and both start and stop signals. Unfortu-
nately, these signals are not always present, and, when they are present, they may not
always be in the same form or context. The reader is referred to the text for greater detail.
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AATAAA. Adding to these complications is the fact that an open reading frame is
required but is not sufficient for judging a region as being an exon. Given these and
other considerations, there is at present no straightforward method that will allow
for 100% confidence in the prediction of an intron or an exon. Despite this, a com-
binatorial approach can be used, relying on a number of methods, to increase the
confidence with which gene structure is predicted.

Briefly, gene-finding strategies can be grouped into three major categories. Con-
tent-based methods rely on the overall, bulk properties of a sequence in making a
determination. Characteristics considered here include how often particular codons
are used, the periodicity of repeats, and the compositional complexity of the se-
quence. Because different organisms use synonymous codons with different fre-
quency, such clues can provide insight into determining regions that are more likely
to be exons. In site-based methods, the focus turns to the presence or absence of a
specific sequence, pattern, or consensus. These methods are used to detect features
such as donor and acceptor splice sites, binding sites for transcription factors, polyA
tracts, and start and stop codons. Finally, comparative methods make determinations
based on sequence homology. Here, translated sequences are subjected to database
searches against protein sequences (cf. Chapter 8) to determine whether a previously
characterized coding region corresponds to a region in the query sequence. Although
this is conceptually the most straightforward of the methods, it is restrictive because
most newly discovered genes do not have gene products that match anything in the
protein databases. Also, the modular nature of proteins and the fact that there are
only a limited number of protein motifs (Chothia and Lesk, 1986) make predicting
anything more than just exonic regions in this way difficult. The reader is referred
to a number of excellent reviews detailing the theoretical underpinnings of these
various classes of methods (Claverie, 1997a; Claverie, 1997b; Guigé, 1997; Snyder
and Stormo, 1997; Claverie, 1998; Rogic et al., 2001). Although many of the gene
prediction methods belong strictly to one of these three classes of methods, most of
the methods that will be discussed here use the strength of combining different
classes of methods to optimize predictions.

With the complexity of the problem at hand and the various approaches described
above for tackling the problem, it becomes important for investigators to gain an
appreciation for when and how each particular method should be applied. A recurring
theme in this chapter will be the fact that, depending on the nature of the data, each
method will perform differently. Put another way, although one method may be best
for human finished sequences, another may be better for unfinished sequences or for
sequences from another organism. In this chapter, we will examine a number of the
commonly used methods that are freely available in the public domain, focusing on
their application to human sequence data; this will be followed by a general discus-
sion of gene-finding strategy.

GRAIL

GRAIL, which stands for Gene Recognition and Analysis Internet Link (Uberbacher
and Mural, 1991; Mural et al., 1992), is the elder statesman of the gene prediction
techniques because it is among the first of the techniques developed in this area and
enjoys widespread usage. As more and more has become known about gene structure
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in general and better Internet tools have become more widespread, GRAIL has con-
tinuously evolved to keep in step with the current state of the field.

There are two basic GRAIL versions that will be discussed in the context of this
discussion. GRAIL 1 makes use of a neural network method to recognize coding
potential in fixed-length (100 base) windows considering the sequence itself, without
looking for additional features such as splice junctions or start and stop codons. An
improved version of GRAIL 1 (called GRAIL 1a) expands on this method by con-
sidering regions immediately adjacent to regions deemed to have coding potential,
resulting in better performance in both finding true exons and eliminating false pos-
itives. Either GRAIL 1 or GRAIL la would be appropriate in the context of searching
for single exons. A further refinement led to a second version, called GRAIL 2, in
which variable-length windows are used and contextual information (e.g., splice junc-
tions, start and stop codons, polyA signals) is considered. Because GRAIL 2 makes
its prediction by taking genomic context into account, it is appropriate for determin-
ing model gene structures.

In this chapter, the output of each of the methods discussed will be shown using
the same set of input data as the query. The sequence that will be considered is that
of a human BAC clone RG364P16 from 7q31, a clone established as part of the
systematic sequencing of chromosome 7 (GenBank AC002467). By using the same
example throughout, the strengths and weaknesses of each of the discussed methods
can be highlighted. For purposes of this example, a client-server application called
XGRAIL will be used. This software, which runs on the UNIX platform, allows for
graphical output of GRAIL 1/1a/2 results, as shown in Figure 10.2. Because the
DNA sequence in question is rather large and is apt to contain at least one gene,
GRAIL 2 was selected as the method. The large, upper window presents an overview
of the ~98 kb making up this clone, and the user can selectively turn on or off
particular markings that identify features within the sequence (described in the figure
legend). Of most importance in this view is the prediction of exons at the very top
of the window, with the histogram representing the probability that a given region
represents an exon. Information on each one of the predicted exons is shown in the
Model Exons window, and the model exons can be assembled and shown as both
Model Genes and as a Protein Translation. Only putative exons with acceptable
probability values (as defined in the GRAIL algorithm) are included in the gene
models. The protein translation can, in turn, be searched against the public databases
to find sequence homologs using a program called genQuest (integrated into
XGRAIL), and these are shown in the Db Hits window. In this case, the 15 exons
in the first gene model (from the forward strand) are translated into a protein that
shows significant sequence homology to a group of proteins putatively involved in
anion transport (Everett et al., 1997).

Most recently, the authors of GRAIL have released GRAIL-EXP, which is based
on GRAIL but uses additional information in making the predictions, including a
database search of known complete and partial gene messages. The inclusion of this
database search in deducing gene models has greatly improved the performance of
the original GRAIL algorithm.

FGENEH/FGENES

FGENEH, developed by Victor Solovyev and colleagues, is a method that predicts
internal exons by looking for structural features such as donor and acceptor splice
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sites, putative coding regions, and intronic regions both 5’ and 3’ to the putative
exon (Solovyev et al., 1994a; Solovyev et al., 1994b; Solovyev et al., 1995). The
method makes use of linear discriminant analysis, a mathematical technique that
allows data from multiple experiments to be combined. Once the data are combined,
a linear function is used to discriminate between two classes of events—here,
whether a given stretch of DNA is or is not an exon. In FGENEH, results of the
linear discriminant approach are then passed to a dynamic programming algorithm
that determines how to best combine these predicted exons into a coherent gene
model. An extension of FGENEH, called FGENES, can be used in cases when
multiple genes are expected in a given stretch of DNA.

The Sanger Centre Web server provides a very simple front-end for performing
FGENES. The query sequence (again, the BAC clone from 7q31) is pasted into the
query box, an identifier is entered, and the search can then be performed. The results
are returned in a tabular format, as shown in Figure 10.3. The total number of
predicted genes and exons (2 and 33, respectively) is shown at the top of the output.
The information for each gene (G) then follows. For each predicted exon, the strand
(Str) is given, with + indicating the forward strand and — indicating the reverse.
The Feature list in this particular case includes initial exons (CDSf), internal exons
(CDS1), terminal exons (CDS1), and polyA regions (Pola). The nucleotide region
for the predicted feature is then given as a range. In the current example, the features
of the second predicted gene are shown in reverse order, since the prediction is based
on the reverse strand. On the basis of the information in the table, predicted proteins
are given at the bottom of the output in FASTA format. The definition line for each
of the predicted proteins gives the range of nucleotide residues involved, as well as
the total length of the protein and the direction (+/—) of the predicted gene.

MZEF

MZEF stands for ‘“Michael Zhang’s Exon Finder,” after its author at the Cold Spring
Harbor Laboratory. The predictions rely on a technique called quadratic discriminant
analysis (Zhang, 1997). Imagine a case in which the results of two types of predic-
tions are plotted against each other on a simple XY graph (for instance, splice site
scores vs. exon length). If the relationship between these two sets of data is nonlinear
or multivariate, the resulting graph will look like a swarm of points. Points lying in
only a small part of this swarm will represent a ‘““correct’ prediction; to separate the
correctly predicted points from the incorrectly predicted points in the swarm, a quad-
ratic function is used, hence the name of the technique. In the case of MZEF, the
measured variables include exon length, intron-exon and exon-intron transitions,
branch sites, 3’ and 5’ splice sites, and exon, strand, and frame scores. MZEF is
intended to predict internal coding exons and does not give any other information
with respect to gene structure.

There are two implementations of MZEF currently available. The program can
be downloaded from the CSHL FTP site for UNIX command-line use, or the program
can be accessed through a Web front-end. The input is a single sequence, read in
only one direction (either the forward or the reverse strand); to perform MZEF on
both strands, the program must be run twice. Returning to the BAC clone from
chromosome 7, MZEF predicts a total of 27 exons in the forward strand (Fig. 10.4).
Focusing in on the first two columns of the table, the region of the prediction is



MZEF

Number of predicted genes: 2 In +chain: 1 In -chain: 1
Number of predicted exons: 33 In +chain: 23 In -chain: 10
Positions of predicted genes and exons:

G Str Feature Start End Weight ORF-start ORF-end
1+ 1 CDSf 3413 - 3594 2.50 3413 - 3592
1+ 2 CDSi 4606 - 4753 1.73 4607 - 4753
1+ 3 CDSsi 5677 - 5790 1.91 5677 - 5790
1+ 4 CDSi 9956 - 10033 2.55 9956 - 10033
1+ 5 CDSi 10174 - 10269 1.86 10174 - 10269
1 + 6 CDSi 11486 - 11592 1.81 11486 - 11590
1 + 7 CDSi 13595 - 13664 3.39 13596 - 13664
1+ 8 CDSi 15636 - 15728 2.38 15636 - 15728
1+ 9 CDSi 17380 - 17610 1.97 17380 - 17610
1 + 10 CDSi 19884 - 19938 2.72 19884 - 19937
1+ 11 CDSsi 25607 - 25752 3.18 25609 - 25752
1 + 12 CDSi 28092 - 28175 3.04 28092 - 28175
1+ 13 CDsi 40915 - 40981 1.00 40915 - 40980
1 + 14 CDSi 41081 - 41262 1.42 41083 - 41262
1 + 15 CDSi 51053 - 51131 1.31 51053 - 51130
1 + 16 CDSi 55392 - 55442 0.95 55394 - 55441
1+ 17 CDSi 60609 - 60692 1.52 60611 - 60691
1+ 18 CDsi 64433 - 64600 3.71 64435 - 64599
1+ 19 CDSi 68964 - 69064 3.15 68966 - 69064
1 + 20 CDSi 69448 - 69531 3.48 69448 - 69531
1 + 21 CDsi 70971 - 71044 3.04 70971 - 71042
1 + 22 CDSi 73696 - 74083 2.25 73697 - 74083
1 + 23 CDs1 74150 - 74731 2.94 74150 - 74728
1+ PolA 75218 4.18

2 - PolA 82006 4.57

2 - 1 CDS1 82727 - 82738 1.32 82730 - 82738
2 - 2 CDSi 83132 - 83197 2.58 83132 - 83197
2 - 3 CDSi 83319 - 83461 2.79 83319 - 83459
2 - 4 CDSi 87607 - 87661 3.62 87608 - 87661
2 - 5 CDSi 89473 - 89706 2.93 89473 - 89706
2 - 6 CDSi 90330 - 90425 1.75 90330 - 90425
2 - 7 CDSi 92005 - 92097 1.79 92005 - 92097
2 - 8 CDSi 92190 - 92259 1.39 92190 - 92258
2 - 9 CDSi 93728 - 93834 2.05 93730 - 93834
2 - 10 CDsi 95221 - 95316 2.27 95221 - 95316

Predicted proteing:
>FGENES 1.5 AC002467 1 Multiexon gene 3413 - 74731

1087 a Ch+
MLSRPTVGSGFPTSCLSTDGVHSTVSLWGRMGYKEKRSLKINLTGRESKATRAENQTDLYV
RFLPPELPPVSLFSEMLAASFSIAVVAYAIAVSVGKVYATKYDYTIDGNQEFIAFGISNI
FSGFFSCFVATTALSRTAVQESTGGKTQVAGIISAATVMIATLALGKLLEPLQKSVLAAV
<remainder of output truncated>

Figure 10.3. FGENES output using the human BAC clone RG364P16 from 7931 as the
query. The columns, going from left to right, represent the gene number (G), strand (str),
feature (described in the main text), start and end points for the predicted exon, a scoring
weight, and start and end points for corresponding open reading frames (ORF-start and
ORF-end). Each predicted gene is shown as a separate block. The tables are followed by
protein translations of any predicted gene products.

given as a range, followed by the probability that the prediction is correct (P). Pre-
dictions with P > 0.5 are considered correct and are included in the table. Immedi-
ately, one begins to see the difference in the predictions between methods. MZEF is
again geared toward finding single exons; therefore, the exons are not shown in the
context of a putative gene, as they are in GRAIL 2 or FGENES. However, the exons
predicted by these methods are not the same, a point that we will return to later in
this discussion.
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Internal coding exons predicted by MZEF
Sequence_length: 97943 G+C_content: 0.391

Coordinates P Frl Fr2 Fr3 Orf 3ss Cds bss

4606-4753 0.548 0.475 0.614 0.444 212 0.531 0.547 0.538
5469-5543 0.557 0.588 0.461 0.600 121 0.499 0.594 0.622
7353-7630 0.826 0.584 0.520 0.549 122 0.498 0.585 0.632
10174-10269 0.546 0.605 0.443 0.442 122 0.517 0.552 0.515
13595-13664 0.998 0.552 0.463 0.608 121 0.564 0.570 0.736
15636-15728 0.534 0.444 0.432 0.544 221 0.488 0.500 0.636
16654-16749 0.904 0.541 0.398 0.458 122 0.534 0.531 0.615
17380~17610 0.940 0.614 0.470 0.442 122 0.518 0.569 0.594
18736-18797 0.597 0.417 0.550 0.603 221 0.536 0.618 0.619
19884-19938 0.866 0.434 0.406 0.537 221 0.550 0.504 0.657
24126-24225 0.969 0.655 0.543 0.539 122 0.532 0.622 0.559
25607-25752 0.977 0.551 0.452 0.466 122 0.530 0.542 0.647
28107-28175 0.966 0.438 0.412 0.662 221 0.492 0.579 0.562
37600-37687 0.605 0.328 0.610 0.434 212 0.515 0.549 0.586
38297-38434 0.946 0.558 0.511 0.441 122 0.528 0.540 0.559
50415-50823 0.632 0.557 0.451 0.470 122 0.543 0.533 0.519
55133-55173 0.873 0.375 0.489 0.530 221 0.531 0.524 0.702
57112-57175 0.518 0.562 0.424 0.469 122 0.514 0.530 0.618
61089-61182 0.602 0.438 0.552 0.456 212 0.556 0.549 0.700
64433-64600 0.980 0.614 0.552 0.505 122 0.517 0.599 0.606
68964-69064 0.941 0.316 0.579 0.564 211 0.513 0.534 0.558
69448-69531 0.997 0.565 0.444 0.364 122 0.536 0.523 0.705
70971-71044 0.948 0.448 0.300 0.507 121 0.575 0.462 0.656
73696-74083 0.968 0.487 0.594 0.498 212 0.552 0.574 0.536
77911-77972 0.596 0.467 0.593 0.434 212 0.480 0.549 0.602
80338-80413 0.944 0.467 0.464 0.590 221 0.507 0.555 0.662
97197-97358 0.738 0.597 0.497 0.523 122 0.521 0.586 0.545

Figure 10.4. MZEF output using the human BAC clone RG364P16 from 7931 as the query.
The columns, going from left to right, give the location of the prediction as a range of
included bases (Coordinates), the probability value (p), frame preference scores, an ORF
indicator showing which reading frames are open, and scores for the 3’ splice site, coding
regions, and 5’ splice site.

GENSCAN

GENSCAN, developed by Chris Burge and Sam Karlin (Burge and Karlin, 1997;
Burge and Karlin, 1998), is designed to predict complete gene structures. As such,
GENSCAN can identify introns, exons, promoter sites, and polyA signals, as do a
number of the other gene identification algorithms. Like FGENES, GENSCAN does
not expect the input sequence to represent one and only one gene or one and only
one exon: it can accurately make predictions for sequences representing either partial
genes or multiple genes separated by intergenic DNA. The ability to make these
predictions accurately when a sequence is in a variety of contexts makes GENSCAN
a particularly useful method for gene identification.

GENSCAN relies on what the author terms a ““probabilistic model”” of genomic
sequence composition and gene structure. By looking for gene structure descriptions
that match or are consistent with the query sequence, the algorithm can assign a
probability as to the chance that a given stretch of sequence represents an exon,
promoter, and so forth. The ‘“‘optimal exons’’ are the ones with the highest probability
and represent the part of the query sequence having the best chance of actually being
an exon. The method will also predict ‘“‘suboptimal exons,” stretches of sequence
having an acceptable probability value but one not as good as the optimal one. The
authors of the method encourage users to examine both sets of predictions so that



PROCRUSTES

alternatively spliced regions of genes or other nonstandard gene structures are not
missed.

With the use of the human BAC clone from 7q31 again, the query can be issued
directly from the GENSCAN Web site, using Vertebrate as the organism, the default
suboptimal cutoff, and Predicted Peptides Only as the print option. The results for
this query are shown in Figure 10.5. The output indicates that there are three genes
in this region, with the first gene having 11 exons, the second gene having 13 exons,
and the third gene having 10 exons. The most important columns in the table are
those labeled Type and P. The Type column indicates whether the prediction is
for an initial exon (Init), an internal exon (Intr), a terminal exon (Term), a
single-exon gene (Sngl), a promoter region (Prom), or a polyA signal (P1y2a). The
P column gives the probability that this prediction is actually correct. GENSCAN
exons having a very high probability value (P > 0.99) are 97.7% accurate where the
prediction matches a true, annotated exon. These high-probability predictions can be
used in the rational design of PCR primers for cDNA amplification or for other
purposes where extremely high confidence is necessary. GENSCAN exons that have
probabilities in the range from 0.50 to 0.99 are deemed to be correct most of the
time; the best-case accuracies for P-values over 0.90 is on the order of 88%. Any
predictions below 0.50 should be discarded as unreliable, and those data are not
given in the table. An alternative view of the data is shown in Figure 10.6. Here,
both the optimal and suboptimal exons are shown, with the initial and terminal exons
showing the direction in which the prediction is being made (5" — 3’ or 3’ — 5’).
This view is particularly useful for large stretches of DNA, as the tables become
harder to interpret when more and more exons are predicted.

By the time of this printing, a new program named GenomeScan will be avail-
able from the Burge laboratory at MIT. GenomeScan assigns a higher score to pu-
tative exons that overlap BLASTX hits than to comparable exons for which similarity
evidence is lacking. Regions of higher similarity (according to BLASTX E-value,
for example) are accorded more confidence than regions of lower similarity, since
weak similarities sometimes do not represent homology. Thus, the predictions of
GenomeScan tend to be consistent with all or almost all of the regions of high
detected similarity but may sometimes ignore a region of weak similarity that either
has weak intrinsic properties (e.g., poor splice signals) or is inconsistent with other
extrinsic information. The accuracy of GenomeScan tends to be significantly higher
than that of GENSCAN when a moderate or closely related protein sequence is
available. An example of the improved accuracy of GenomeScan over GENSCAN,
using the human BRCA1 gene as the query, is shown in Figure 10.7.

PROCRUSTES

Greek mythology heralds the story of Theseus, the king of Athens who underwent
many trials and tribulations on his way to becoming a hero, along with Hercules. As
if Amazons and the Minotaur were not enough, in the course of his travels, Theseus
happened upon Procrustes, a bandit with a warped idea of hospitality. Procrustes,
which means “he who stretches,” would invite passersby into his home for a meal
and a night’s stay in his guest bed. The problem lay, quite literally, in the bed, in
that Procrustes would make sure that his guests fit in the bed by stretching them out
on a rack if they were too short or by chopping off their legs if they were too long.

241



242

PR R R RR B RP PR
o
Q

.00
.01
.02
.03
.04
.05
.06
.07
.08
.09
.10
.11
.12
.13
.14

BN RN RN NN NN NN R NN

L1
.10
.09
.08
.07
.06
.05
.04
.03
.02
.01

W W wwwwwwwww

Init
Intr
Intr
Intr
Intr
Intr
Intr
Intr
Intr
Intr
Term
PlyA

Prom
Init
Intr
Intr
Intr
Intr
Intr
Intr
Intr
Intr
Intr
Intr
Intr
Term
PlyA

PlyA
Term
Intr
Intr
Intr
Intr
Intr
Intr
Intr
Intr
Intr

+ o+ o+ o+ o+

TS I K T T T T T S S S

107

93
96
231
55
248

40
165
84
141
163
208
180
291
20
168
101
84
74
1036

105
66
143
55
216
111
93
70
107
96

Predicted peptide sequence(s):

>AC002467 . seq|GENSCAN_predicted_peptide 1]430_aa

MLAASFSIAVVAYAIAVSVGKVYATKYDYTIDGNQEF IAFGISNIFSGFFSCFVATTALS
RTAVQESTGGKTQVAGI ISAATVMIAILALGKLLEPLQKSVLAAVVIANLKGMFMOLCDI
PRLWRQNK IDAVIWVFTCIVSIILGLDLGLLAGLIFGLLTVVLRVQFPSWNGLGSIPSTD

<remainer of output truncated>

Figure 10.5. GENSCAN output using the human BAC clone RG364P16 from 7qg31 as the
query. The columns, going from left to right, represent the gene and exon number (Gn. Ex),
the type of prediction (Type), the strand on which the prediction was made (s, with + as
the forward strand and — as the reverse), the beginning and endpoints for the prediction
(Begin and End), the length of the prediction (Len), the reading frame of the prediction
(Fr), several scoring columns, and the probability value (P). Each predicted gene is shown
as a separate block; notice that the third gene has its exons listed in reverse order, reflecting
that the prediction is on the reverse strand. The tables are followed by the protein trans-
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GENSCAN predicted genes in sequence Human

1 1 ] b p. 1
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cexon cexon cexon gene D Suboptimal exon
Figure 10.6. GENSCAN output in graphical form, using the human BAC clone RG364P16
from 7931 as the query. Optimal and suboptimal exons are indicated, and the initial and
terminal exons show the direction in which the prediction is being made (5 — 3’ or 3’
— 5').

Theseus made short order of Procrustes by fitting him to his own bed, thereby sparing
any other traveler the same fate. On the basis of this story, the phrase ‘“‘bed of
Procrustes” has come to convey the idea of forcing something to fit where it normally
would not.

Living up to its namesake, PROCRUSTES takes genomic DNA sequences and
“forces” them to fit into a pattern as defined by a related target protein (Gelfand et
al., 1996). Unlike the other gene prediction methods that have been discussed, the
algorithm does not use a DNA sequence on its own to look for content- or site-based
signals. Instead, the algorithm requires that the user identify putative gene products
before the prediction is made, so that the prediction represents the best fit of the
given DNA sequence to its putative transcription product. The method uses a spliced
alignment algorithm to sequentially explore all possible exon assemblies, looking for
the best fit of predicted gene structure to candidate protein. If the candidate protein
is known to arise from the query DNA sequence, correct gene structures can be
predicted with an accuracy of 99% or better. By making use of candidate proteins
in the course of the prediction, PROCRUSTES can take advantage of information
known about this protein or related proteins in the public databases to better deter-
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mine the location of the introns and the exons in this gene. PROCRUSTES can
handle cases where there are either partial or multiple genes in the query DNA
sequence.

The input to PROCRUSTES is through a Web interface and is quite simple. The
user needs to supply the nucleotide sequence and as many protein sequences as are
relevant to this region. The supplied protein sequences will be treated as being sim-
ilar, though not necessarily identical, to that encoded by the DNA sequence. Typical
output from PROCRUSTES (not shown here) includes an aligned map of the pre-
dicted intron-exon structure for all target proteins, probability values, a list of exons
with their starting and ending nucleotide positions, translations of the gene model
(which may not be the same as the sequence of the initially supplied protein), and
a “‘spliced alignment” showing any differences between the predicted protein and
the target protein. The nature of the results makes PROCRUSTES a valuable method
for refining results obtained by other methods, particularly in the context of positional
candidate efforts.

GenelD

The current version of GenelD finds exons based on measures of coding potential
(Guigé et al., 1992). The original version of this program was among the fastest in
that it used a rule-based system to examine the putative exons and assemble them
into the “most likely gene’ for that sequence. GenelD uses position-weight matrices
to assess whether or not a given stretch of sequence represents a splice site or a start
or stop codon. Once this assessment is made, models of putative exons are built. On
the basis of the sets of predicted exons that GenelD develops, a final refinement
round is performed, yielding the most probable gene structure based on the input
sequence.

The interface to GenelD is through a simple Web front-end, in which the user
pastes in the DNA sequence and specifies whether the organism is either human or
Drosophila. The user can specify whether predictions should be made only on the
forward or reverse strand, and available output options include lists of putative ac-
ceptor sites, donor sites, and start and stop codons. Users can also limit output to
only first exons, internal exons, terminal exons, or single genes, for specialized anal-
yses. It is recommended that the user simply select All Exons to assure that all
relevant information is returned.

GeneParser

GeneParser (Snyder and Stormo, 1993; Snyder and Stormo, 1997) uses a slightly
different approach in identifying putative introns and exons. Instead of predetermin-
ing candidate regions of interest, GeneParser computes scores on all “‘subintervals”
in a submitted sequence. Once each subinterval is scored, a neural network approach
is used to determine whether each subinterval contains a first exon, internal exon,
final exon, or intron. The individual predictions are then analyzed for the combination
that represents the most likely gene. There is no Web front-end for this program, but
the program itself is freely available for use on Sun, DEC, and SGI-based systems.
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HMMgene

HMMgene predicts whole genes in any given DNA sequence using a hidden Markov
model (HMM) method geared toward maximizing the probability of an accurate
prediction (Krogh, 1997). The use of HMMs in this method helps to assess the
confidence in any one prediction, enabling HMMgene to not only report the ‘“‘best”
prediction for the input sequence but alternative predictions on the same sequence
as well. One of the strengths of this method is that, by returning multiple predictions
on the same region, the user may be able to gain insight onto possible alternative
splicings that may occur in a region containing a single gene.

The front-end for HMMgene requires an input sequence, with the organismal
options being either human or C. elegans. An interesting addition is that the user
can include known annotations, which could be from one of the public databases or
based on experimental data that the investigator is privy to. Multiple sequences in
FASTA format can be submitted as a single job to the server. Examples of sequence
input format and resulting output are given in the documentation file at the
HMMgene Web site.

HOW WELL DO THE METHODS WORK?

As we have already seen, different methods produce different types of results—in
some cases, lists of putative exons are returned but these exons are not in a genomic
context; in other cases, complete gene structures are predicted but possibly at a cost
of less-reliable individual exon predictions. Looking at the absolute results for the
7931 BAC clone, anywhere between one and three genes are predicted for the region,
and those one to three genes have anywhere between 27 and 34 exons. In cases of
similar exons, the boundaries of the exons are not always consistent. Which method
is the “winner” in this particular case is not important; what is important is the
variance in the results.

Returning to the cautionary note that different methods will perform better or
worse, depending on the system being examined, it becomes important to be able to
quantify the performance of each of these algorithms. Several studies have syste-
matically examined the rigor of these methods using a variety of test data sets (Burset
and Guigd, 1996; Claverie, 1997a; Snyder and Stormo, 1997, Rogic et al., 2001).
Before discussing the results of these studies, it is necessary to define some terms.

For any given prediction, there are four possible outcomes: the detection of a
true positive, true negative, false positive, or false negative (Fig. 10.8). Two measures
of accuracy can be calculated based on the ratios of these occurrences: a sensitivity
value, reflecting the fraction of actual coding regions that are correctly predicted as
truly being coding regions, and a specificity value, reflecting the overall fraction of
the prediction that is correct. In the best-case scenario, the methods will try to op-
timize the balance between sensitivity and specificity, to be able to find all of the
true exons without becoming so sensitive as to start picking up an inordinate amount
of false positives. An easier-to-understand measure that combines the sensitivity and
specificity values is called the correlation coefficient. Like all correlation coefficients,
its value can range from — 1, meaning that the prediction is always wrong, through
zero, to + 1, meaning that the prediction is always right.
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TP FP TN |FN TP FN |TN
Actual
Predicted
Predicted
Positives (PP) Negatives (PN)
'S Positives (AP) P FN
<U Negatives (AN) FP TN

Sensitivity (Sn) = TP / (TP+FN)
Specificity (Sp) = TP / (TP+FP)

TP*TN + FP*FN

Correlation Coefficient (CC) =

JPP*PN<AP+AN

Figure 10.8. Sensitivity vs. specificity. In the upper portion, the four possible outcomes of
a prediction are shown: a true positive (TP), a true negative (TN), a false positive (FP), and
a false negative (FN). The matrix at the bottom shows how both sensitivity and specificity
are determined from these four possible outcomes, giving a tangible measure of the ef-
fectiveness of any gene prediction method. (Figure adapted from Burset and Guigd, 1996;
Snyder and Stormo, 1997.)

As a result of a Cold Spring Harbor Laboratory meeting on gene prediction,' a
Web site called the “Banbury Cross” was created. The intent behind creating such
a Web site was twofold: for groups actively involved in program development to
post their methods for public use and for researchers actively deriving fully char-
acterized, finished genomic sequence to submit such data for use as ‘““benchmark™
sequences. In this way, the meeting participants created an active forum for the
dissemination of the most recent findings in the field of gene identification. Using
these and other published studies, Jean-Michel Claverie at CNRS in Marseille com-
pared the sensitivity and specificity of 14 different gene identification programs
(Claverie, 1997, and references therein); PROCRUSTES was not one of the 14 con-
sidered, since the method varies substantially from that employed by other gene
prediction programs. In examining data from these disparate sources, either the best
performance found in an independent study or the worst performance reported by
the authors of the method themselves was used in making the comparisons. On the
basis of these comparisons, the best overall individual exon finder was deemed to
be MZEF and the best gene structure prediction program was deemed to be GEN-
SCAN. (By back-calculating as best as possible from the numbers reported in the
Claverie paper, these two methods gave the highest correlation coefficients within
their class, with CCyzer —~ 0.79 and CCgpnscan — 0.86.)

'Finding Genes: Computational Analysis of DNA Sequences. Cold Spring Harbor Laboratory, March
1997.
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Because these gene-finding programs are undergoing a constant evolution, add-
ing new features and incorporating new biological information, the idea of a com-
parative analysis of a number of representative algorithms was recently revisited
(Rogic et al., 2001). One of the encouraging outcomes of this study was that these
newer methods, as a whole, did a substantially better job in accurately predicting
gene structures than their predecessors did. By using an independent data set con-
taining 195 sequences from GenBank in which intron-exon boundaries have been
annotated, GENSCAN and HMMgene appeared to perform the best, both having a
correlation coefficient of 0.91. (Note the improvement of CCggnscan from the time
of the Burset and Guig6 study to the time of the Rogic et al. study.)

STRATEGIES AND CONSIDERATIONS

Given these statistics, it can be concluded that both MZEF and GENSCAN are
particularly suited for differentiating introns from exons at different stages in the
maturation of sequence data. However, this should not be interpreted as a blanket
recommendation to only use these two programs in gene identification. Remember
that these results represent a compilation of findings from different sources, so keep
in mind that the reported results may not have been derived from the same data set.
It has already been stated numerous times that any given program can behave better
or worse depending on the input sequences. It has also been demonstrated that the
actual performance of these methods can be highly sensitive to G + C content. For
example, Snyder and Stormo (1997) reported that GeneParser (Snyder and Stormo,
1993) and GRAIL2 (with assembly) performed best on test sets having high G + C
content (as assessed by their respective CC values), whereas GenelD (Guigé et al.,
1992) performed best on test sets having low G + C content. Interestingly, both
GENSCAN and HMMgene were seen to perform ‘‘steadily,” regardless of G + C
content, in the Rogic study (Rogic et al., 2001).

There are several major drawbacks that most gene identification programs share
that users need to be keenly aware of. Because most of these methods are ‘‘trained”
on test data, they will work best in finding genes most similar to those in the training
sets (that is, they will work best on things similar to what they have seen before).
Often methods have an absolute requirement to predict both a discrete beginning and
an end to a gene, meaning that these methods may miscall a region that consists of
either a partial gene or multiple genes. The importance given to each individual
factor in deciding whether a stretch of sequence is an intron or an exon can also
influence outcomes, as the weighing of each criterion may be either biased or in-
correct. Finally, there is the unusual case of genes that are transcribed but not trans-
lated (so-called ‘“‘noncoding RNA genes’’). One such gene, NTT (noncoding tran-
script in T cells), shows no exons or significant open reading frames, even though
RT-PCR shows that NTT is transcribed as a polyadenlyated 17-kb mRNA (Liu et
al.,, 1997). A similar protein, IPW, is involved in imprinting, and its expression is
correlated to the incidence of Prader-Willi syndrome (Wevrick et al., 1996). Because
hallmark features of gene structure are presumably absent from these genes, they
cannot be reliably detected by any known method to date.

It begins to become evident that no one program provides the foolproof key to
computational gene identification. The correct choice will depend on the nature of
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the data and where in the pathway of data maturation the data lie. On the basis of
the studies described above, some starting points can be recommended. In the case
of incompletely assembled sequence contigs (prefinished genome survey sequence),
MZEF provides the best jumping-off point, since, for sequences of this length, one
would expect no more than one exon. In the case of nearly finished or finished data,
where much larger contigs provide a good deal of contextual information, GEN-
SCAN or HMMgene would be an appropriate choice. In either case, users should
supplement these predictions with results from at least one other predictive method,
as consistency among methods can be used as a qualitative measure of the robustness
of the results. Furthermore, utilization of comparative search methods, such as
BLAST (Altschul et al., 1997) or FASTA (Pearson et al., 1997), should be considered
an absolute requirement, with users targeting both dbEST and the protein databases
for homology-based clues. PROCRUSTES again should be used when some infor-
mation regarding the putative gene product is known, particularly when the cloning
efforts are part of a positional candidate strategy.

A good example of the combinatorial approach is illustrated in the case of the
gene for cerebral cavernous malformation (CCM1) located at 7q21-7q22; here, a
combination of MZEF, GENSCAN, XGRAIL, and PowerBLAST (Zhang and Mad-
den, 1997) was used in an integrated fashion in the prediction of gene structure
(Kuehl et al., 1999). Another integrated approach to this approach lies in ‘““work-
benches” such as Genotator, which allow users to simultaneously run a number of
prediction methods and homology searches, as well as providing the ability to an-
notate sequence features through a graphical user interface (Harris, 1997).

A combinatorial method developed at the National Human Genome Research
Institute combines most of the methods described in this chapter into a single tool.
This tool, named GeneMachine, allows users to query multiple exon and gene pre-
diction programs in an automated fashion (Makalowska et al., 1999). A suite of Perl
modules are used to run MZEF, GENSCAN, GRAIL2, FGENES, and BLAST.
RepeatMasker and Sputnik are used to find repeats within the query sequence. Once
GeneMachine is run, a file is written that can subsequently be opened using NCBI
Sequin, in essence using Sequin as a workbench and graphical viewer. Using Sequin
also has the advantage of presenting the results to the user in a familiar format—
basically the same format that is used in Entrez for graphical views. The main feature
of GeneMachine is that the process is fully automated; the user is only required to
launch GeneMachine and then open the resulting file with NCBI Sequin. Gene-
Machine also does not require users to install local copies of the prediction programs,
enabling users to pass-off to Web interfaces instead; although this reduces some of
the overhead of maintaining the program, it does result in slower performance. An-
notations can then be made to these results before submission to GenBank, thereby
increasing the intrinsic value of these data. A sample of the output obtained using
GeneMachine is shown in Figure 10.9, and more details on GeneMachine can be
found on the NHGRI Web site.

The ultimate solution to the gene identification problem lies in the advancement
of the Human Genome Project and other sequencing projects. As more and more
gene structures are elucidated, this biological information can in turn be used to
develop better methods, yielding more accurate predictions. Although the promise
of such computational methods may not be completely fulfilled before the Human
Genome Project reaches completion, the information learned from this effort will
play a major role in facilitating similar efforts targeting other model genomes.
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Figure 10.9. Annotated output from GeneMachine showing the results of multiple gene
prediction program runs. NCBI Sequin is used at the viewer. The top of the output shows
the results from various BLAST runs (BLASTN vs. dbEST, BLASTN vs. nr, and BLASTX vs. SWISS-
PROT). Toward the bottom of the window are shown the results from the predictive meth-
ods (FGENES, GENSCAN, MZEF, and GRAIL 2). Annotations indicating the strength of the
prediction are preserved and shown wherever possible within the viewer. Putative regions
of high interest would be areas where hits from the BLAST runs line up with exon predic-
tions from the gene prediction programs. (See color plate.)

INTERNET RESOURCES FOR TOPICS PRESENTED IN CHAPTER 10

Banbury Cross http://igs-server.cnrs-mrs.fr/igs/banbury

FGENEH http://genomic.sanger.ac.uk/gf/gf.shtml

GenelD http://wwwl.imim.es/geneid. html

GeneMachine http://genome.nhgri.nih.gov/genemachine

GeneParser http://beagle.colorado.edu/~ eesnyder/GeneParser. htl
GENSCAN http://genes.mit.edu/GENSCAN. html

Genotator http://www.fruitfly.org/~ nomi/genotator/

GRAIL http://compbio.ornl.gov/tools/index.shtml
GRAIL-EXP http://compbio.ornl.gov/grailexp/

HMMgene http://www.cbs.dtu.dk/servicessfHMMgene/

MZEF http://www.cshl.org/genefinder
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PROCRUSTES http://www-hto.usc.edu/software/procrustes
RepeatMasker http://ftp.genome.washington.edu/RM/RepeatMasker. html
Sputnik http://rast.abajian.com/sputnik/

PROBLEM SET

An anonymous sequence from 18q requiring computational analysis is posted on the
book’s Web site (http://www.wiley.com/bioinformatics). To gain a better appreciation
for the relative performance of the methods discussed in this chapter and how the
results may vary between methods, use FGENES, GENSCAN, and HMMgene to
answer each of the following questions.

. How many exons are in the unknown sequence?

. What are the start and stop points for each of these exons?

1

2

3. Which strand (forward or reverse) are the putative exons found on?

4. Are there any unique features present, like polyA tracts? Where are they located?
5

. Can any protein translations be derived from the sequence? What is the length
(in amino acids) of these translations?

6. For HMMgene only, can alternative translations be computed for this particular
DNA sequence? If so, give the number of exons and the length of the coding
region (CDS) for each possible alternative prediction. Note on which strand the
alternative translations are found.
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The discussions of databases and information retrieval in earlier chapters of this book
document the tremendous explosion in the amount of sequence information available
in a variety of public databases. As we have already seen with nucleotide sequences,
all protein sequences, whether determined directly or through the translation of an
open reading frame in a nucleotide sequence, contain intrinsic information of value
in determining their structure or function. Unfortunately, experiments aimed at ex-
tracting such information cannot keep pace with the rate at which raw sequence data
are being produced. Techniques such as circular dichroism spectroscopy, optical ro-
tatory dispersion, X-ray crystallography, and nuclear magnetic resonance are ex-
tremely powerful in determining structural features, but their execution requires many
hours of highly skilled, technically demanding work. The gap in information becomes
obvious in comparisons of the size of the protein sequence and structure databases;
as of this writing, there were 87,143 protein entries (Release 39.0) in SWISS-PROT
but only 12,624 structure entries (July, 2000) in PDB. Attempts to close the gap
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center around theoretical approaches for structure and function prediction. These
methods can provide insights as to the properties of a protein in the absence of
biochemical data.

This chapter focuses on computational techniques that allow for biological dis-
covery based on the protein sequence itself or on their comparison to protein families.
Unlike nucleotide sequences, which are composed of four bases that are chemically
rather similar (yet distinct), the alphabet of 20 amino acids found in proteins allows
for much greater diversity of structure and function, primarily because the differences
in the chemical makeup of these residues are more pronounced. Each residue can
influence the overall physical properties of the protein because these amino acids are
basic or acidic, hydrophobic or hydrophilic, and have straight chains, branched
chains, or are aromatic. Thus, each residue has certain propensities to form structures
of different types in the context of a protein domain. These properties, of course, are
the basis for one of the central tenets of biochemistry: that sequence specifies con-
formation (Anfinsen et al., 1961).

The major precaution with respect to these or any other predictive techniques is
that, regardless of the method, the results are predictions. Different methods, using
different algorithms, may or may not produce different results, and it is important to
understand how a particular predictive method works rather than just approaching
the algorithm as a ‘““black box’’: one method may be appropriate in a particular case
but totally inappropriate in another. Even so, the potential for a powerful synergy
exists: proper use of these techniques along with primary biochemical data can pro-
vide valuable insights into protein structure and function.

PROTEIN IDENTITY BASED ON COMPOSITION

The physical and chemical properties of each of the 20 amino acids are fairly well
understood, and a number of useful computational tools have been developed for
making predictions regarding the identification of unknown proteins based on these
properties (and vice versa). Many of these tools are available through the ExPASy
server at the Swiss Institute of Bioinformatics (Appel et al., 1994). The focus of the
ExPASy tools is twofold: to assist in the analysis and identification of unknown
proteins isolated through two-dimensional gel electrophoresis, as well as to predict
basic physical properties of a known protein. These tools capitalize on the curated
annotations in the SWISS-PROT database in making their predictions. Although
calculations such as these are useful in electrophoretic analysis, they can be very
valuable in any number of experimental areas, particularly in chromatographic and
sedimentation studies. In this and the following section, tools in the ExPASy suite
are identified, but the ensuing discussion also includes a number of useful programs
made available by other groups. Internet resources related to these and other tools
discussed in this chapter are listed at the end of the chapter.

AACompldent and AACompSim (ExPASy)

Rather than using an amino acid sequence to search SWISS-PROT, AACompldent
uses the amino acid composition of an unknown protein to identify known proteins
of the same composition (Wilkins et al., 1996). As inputs, the program requires the
desired amino acid composition, the isoelectric point (pI) and molecular weight of
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the protein (if known), the appropriate taxonomic class, and any special keywords.
In addition, the user must select from one of six amino acid ‘“‘constellations,”” which
influence how the analysis is performed; for example, certain constellations may
combine residues like Asp/Asn (D/N) and Gln/Glu (Q/E) into Asx (B) and GIx (Z),
or certain residues may be eliminated from the analysis altogether.

For each sequence in the database, the algorithm computes a score based on the
difference in compositions between the sequence and the query composition. The
results, returned by E-mail, are organized as three ranked lists:

 a list based on all proteins from the specified taxonomic class without taking
pI or molecular weight into account;

* a list based on all proteins regardless of taxonomic class without taking pl or
molecular weight into account; and

* a list based on the specified taxonomic class that does take pI and molecular
weight into account.

Because the computed scores are a difference measure, a score of zero implies that
there is exact correspondence between the query composition and that sequence
entry.

AACompSim, a variant of AACompldent, performs a similar type of analysis,
but, rather than using an experimentally derived amino acid composition as the basis
for searches, the sequence of a SWISS-PROT protein is used instead (Wilkins et al.,
1996). A theoretical pl and molecular weight are computed before computation of
the difference scores using Compute pI/MW (see below). It has been documented
that amino acid composition across species boundaries is well conserved (Cordwell
et al., 1995) and that, by considering amino acid composition, investigators can detect
weak similarities between proteins whose sequence identity falls below 25% (Ho-
bohm and Sander, 1995). Thus the consideration of composition in addition to the
ability to perform “‘traditional” database searches may provide additional insight into
the relationships between proteins.

PROPSEARCH

Along the same lines as AACompSim, PROPSEARCH uses the amino acid com-
position of a protein to detect weak relationships between proteins, and the authors
have demonstrated that this technique can be used to easily discern members of the
same protein family (Hobohm and Sander, 1995). However, this technique is more
robust than AACompSim in that 144 different physical properties are used in per-
forming the analysis, among which are molecular weight, the content of bulky res-
idues, average hydrophobicity, and average charge. This collection of physical prop-
erties is called the query vector, and it is compared against the same type of vector
precomputed for every sequence in the target databases (SWISS-PROT and PIR).
Having this ‘“‘database of vectors” calculated in advance vastly improves the proc-
essing time for a query.

The input to the PROPSEARCH Web server is just the query sequence, and an
example of the program output is shown in Figure 11.1. Here, the sequence of human
autoantigen NOR-90 was used as the input query. The results are ranked by a distance
score, and this score represents the likelihood that the query sequence and new
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sequences found through PROPSEARCH belong to the same family, thereby imply-
ing common function in most cases. A distance score of 10 or below indicates that
there is a better than 87% chance that there is similarity between the two proteins.
A score below 8.7 increases the reliability to 94%, and a score below 7.5 increases
the reliability to 99.6%. Examination of the results showed NOR-90 to be similar to
a number of nucleolar transcription factors, protein kinases, a retinoblastoma-binding
protein, the actin-binding protein radixin, and RalBP1, a putative GTPase target.
None of these hits would necessarily be expected, since the functions of these pro-
teins are dissimilar; however, a good number of these are DNA-binding proteins,
opening the possibility that a very similar domain is being used in alternative func-
tional contexts. At the very least, a BLASTP search would be necessary to both
verify the results and identify critical residues.

MOWSE

The Molecular Weight Search (MOWSE) algorithm capitalizes on information ob-
tained through mass spectrometric (MS) techniques (Pappin et al., 1993). With the
use of both the molecular weights of intact proteins and those resulting from diges-
tion of the same proteins with specific proteases, an unknown protein can be un-
ambiguously identified given the results of several experimental determinations. This
approach substantially cuts down on experimental time, since the unknown protein
does not have to be sequenced in whole or in part.

The MOWSE Web front end requires the molecular weight of the starting se-
quence and the reagent used, as well as the resultant masses and composition of the
peptides generated by the reagent. A tolerance value may be specified, indicating the
error allowed in the accuracy of the determined fragment masses. Calculations are
based on information contained in the OWL nonredundant protein sequence database
(Akrigg et al., 1988). Scoring is based on how often a fragment molecular weight
occurs in proteins within a given range of molecular weights, and the output is
returned as a ranked list of the top 30 scores, with the OWL entry name, matching
peptide sequences, and other statistical information. Simulation studies produced an
accuracy rate of 99% using five or fewer input peptide weights.

PHYSICAL PROPERTIES BASED ON SEQUENCE

Compute pl/MW and ProtParam (ExPASy)

Compute pI/MW is a tool that calculates the isoelectric point and molecular weight
of an input sequence. Determination of pl is based on pK values, as described in an
earlier study on protein migration in denaturing conditions at neutral to acidic pH
(Bjellgvist et al., 1993). Because of this, the authors caution that plI values determined
for basic proteins may not be accurate. Molecular weights are calculated by the
addition of the average isotopic mass of each amino acid in the sequence plus that
of one water molecule. The sequence can be furnished by the user in FASTA format,
or a SWISS-PROT identifier or accession number can be specified. If a sequence is
furnished, the tool automatically computes the pI and molecular weight for the entire
length of the sequence. If a SWISS-PROT identifier is given, the definition and
organism lines of the entry are shown, and the user may specify a range of amino
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acids so that the computation is done on a fragment rather than on the entire protein.
ProtParam takes this process one step further. Based on the input sequence, Prot-
Param calculates the molecular weight, isoelectric point, overall amino acid com-
position, a theoretical extinction coefficient (Gill and von Hippel, 1989), aliphatic
index (Ikai, 1980), the protein’s grand average of hydrophobicity (GRAVY) value
(Kyte and Doolittle, 1982), and other basic physicochemical parameters. Although
this might seem to be a very simple program, one can begin to speculate about the
cellular localization of the protein; for example, a basic protein with a high propor-
tion of lysine and arginine residues may well be a DNA-binding protein.

PeptideMass (ExPASy)

Designed for use in peptide mapping experiments, PeptideMass determines the cleav-
age products of a protein after exposure to a given protease or chemical reagent
(Wilkins et al., 1997). The enzymes and reagents available for cleavage through
PeptideMass are trypsin, chymotrypsin, LysC, cyanogen bromide, ArgC, AspN, and
GIuC (bicarbonate or phosphate). Cysteines and methionines can be modified before
the calculation of the molecular weight of the resultant peptides. By furnishing a
SWISS-PROT identifier rather than pasting in a raw sequence, PeptideMass is able
to use information within the SWISS-PROT annotation to improve the calculations,
such as removing signal sequences or including known posttranslational modifica-
tions before cleavage. The results are returned in tabular format, giving a theoretical
pI and molecular weight for the starting protein and then the mass, position, modified
masses, information on variants from SWISS-PROT, and the sequence of the peptide
fragments.

TGREASE

TGREASE calculates the hydrophobicity of a protein along its length (Kyte and
Doolittle, 1982). Inherent in each of the 20 amino acids is its hydrophobicity: the
relative propensity of the acid to bury itself in the core of a protein and away from
surrounding water molecules. This tendency, coupled with steric and other consid-
erations, influences how a protein ultimately folds into its final three-dimensional
conformation. As such, TGREASE finds application in the determination of putative
transmembrane sequences as well as the prediction of buried regions of globular
proteins. TGREASE is part of the FASTA suite of programs available from the
University of Virginia and runs as a stand-alone application that can be downloaded
and run on either Macintosh or DOS-based computers.

The method relies on a hydropathy scale, in which each amino acid is assigned
a score reflecting its relative hydrophobicity based on a number of physical char-
acteristics (e.g., solubility, the free energy of transfer through a water-vapor phase
transition, etc.). Amino acids with higher, positive scores are more hydrophobic;
those with more negative scores are more hydrophilic. A moving average, or hydro-
pathic index, is then calculated across the protein. The window length is adjustable,
with a span of 7—11 residues recommended to minimize noise and maximize infor-
mation content. The results are then plotted as hydropathic index versus residue
number. The sequence for the human interleukin-8 receptor B was used to generate
a TGREASE plot, as shown in Figure 11.2. Correspondence between the peaks and
the actual location of the transmembrane segments, although not exact, is fairly good;
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Figure 11.2. Results of a Kyte-Doolittle hydropathy determination using TGREASE. The
input sequence was of the high affinity interleukin-8 receptor B from human. Default win-
dow lengths were used. The thick, horizontal bars across the bottom of the figure were
added manually and represent the positions of the seven transmembrane regions of IL-8R-
B, as given in the SWISS-PROT entry for this protein (P25025).

keep in mind that the method is predicting all hydrophobic regions, not just those
located in transmembrane regions. The specific detection of transmembrane regions
is discussed further below.

SAPS

The Statistical Analysis of Protein Sequences (SAPS) algorithm provides extensive
statistical information for any given query sequence (Brendel et al., 1992). When a
protein sequence is submitted via the SAPS Web interface, the server returns a large
amount of physical and chemical information on the protein, based solely on what
can be inferred from its sequence. The output begins with a composition analysis,
with counts of amino acids by type. This is followed by a charge distribution analysis,
including the locations of positively or negatively charged clusters, high-scoring
charged and uncharged segments, and charge runs and patterns. The final sections
present information on high-scoring hydrophobic and transmembrane segments, re-
petitive structures, and multiplets, as well as a periodicity analysis.

MOTIFS AND PATTERNS

In Chapter 8, the idea of direct sequence comparison was presented, where BLAST
searches are performed to identify sequences in the public databases that are similar
to a query sequence of interest. Often, this direct comparison may not yield any
interesting results or may not yield any results at all. However, there may be very
weak sequence determinants that are present that will allow the query sequence to
be associated with a family of sequences. By the same token, a family of sequences
can be used to identify new, distantly related members of the same protein family;
an example of this is PSI-BLAST, discussed in Chapter 8.
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Before discussing two of the methods that capitalize on such an approach, several
terms have to be defined. The first is the concept of profiles. Profiles are, quite simply,
a numerical representation of a multiple sequence alignment, much like the multiple
sequence alignments derived from the methods discussed in Chapter 9. Imbedded
within a multiple sequence alignment is intrinsic sequence information that represents
the common characteristics of that particular collection of sequences, frequently a
protein family. By using a profile, one is able to use these imbedded, common
characteristics to find similarities between sequences with little or no absolute se-
quence identity, allowing for the identification and analysis of distantly related pro-
teins. Profiles are constructed by taking a multiple sequence alignment representing
a protein family and then asking a series of questions:

¢ What residues are seen at each position of the alignment?

* How often does a particular residue appear at each position of the alignment?
* Are there positions that show absolute conservation?

* Can gaps be introduced anywhere in the alignment?

Once those questions are answered, a position-specific scoring table (PSST) is con-
structed, and the numbers in the table now represent the multiple sequence alignment.
The numbers within the PSST reflect the probability of any given amino acid oc-
curring at each position. It also reflects the effect of a conservative or nonconser-
vative substitution at each position in the alignment, much like a PAM or BLOSUM
matrix does. This PSST can now be used for comparison against single sequences.

The second term requiring definition is pattern or signature. A signature also
represents the common characteristics of a protein family (or a multiple sequence
alignment) but does not contain any weighting information whatsoever—it simply
provides a shorthand notation for what residues can be present at any given position.
For example, the signature

[IV] -G -x-G-T-[LIVMF] - x(2) - [GS]

would be read as follows: the first position could contain either an isoleucine or a
valine, the second position could contain only a glycine, and so on. An x means that
any residue can appear at that position. The x (2) simply means that two positions
can be occupied by any amino acid, the number just reflecting the length of the
nonspecific run.

ProfileScan

Based on the classic Gribskov method of profile analysis (Gribskov et al., 1987,
1988), ProfileScan uses a method called pfscan to find similarities between a protein
or nucleic acid query sequence and a profile library (Liithy et al., 1994). In this case,
three profile libraries are available for searching. First is PROSITE, an ExPASy
database that catalogs biologically significant sites through the use of motif and
sequence profiles and patterns (Hofmann, 1999). Second is Pfam, which is a collec-
tion of protein domain families that differ from most such collections in one impor-
tant aspect: the initial alignment of the protein domains is done by hand, rather than
by depending on automated methods. As such, Pfam contains slightly over 500 en-
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tries, but the entries are potentially of higher quality. The third profile set is referred
to as the Gribskov collection.

Searches against any of these collections can be done through the ProfileScan
Web page, which simply requires either an input sequence in plain text format, or
an identifier such as a SWISS-PROT ID. The user can select the sensitivity of the
search, returning either significant matches only or all matches, including borderline
cases. To illustrate the output format, the sequence of a human heat-shock-induced
protein was submitted to the server for searching against PROSITE profiles only.

normalized raw from - to Profile | Description
355.9801 41556 pos. 6 - 612 PF00012 | HSP70 Heat shock hsp70 proteins

Although the actual PROSITE entry returned is no great surprise, the output
contains scores that are worth understanding. The raw score is the actual score cal-
culated from the scoring matrix used during the search. The more informative number
is the normalized or N-score. The N-score formally represents the number of matches
one would expect in a database of given size. Basically, the larger the N-score the
lower the probability that the hit occurred by chance. In the example, the N-score
of 355 translates to 1.94 x 10>* expected chance matches when normalized against
SWISS-PROT—an extremely low probability of this being a false positive. The
from and to numbers simply show the positions of the overlap between the query
and the matching profile.

BLOCKS

The BLOCKS database utilizes the concept of blocks to identify a family of proteins,
rather than relying on the individual sequences themselves (Henikoff and Henikoff,
1996). The idea of a block is derived from the more familiar notion of a motif, which
usually refers to a conserved stretch of amino acids that confer a specific function
or structure to a protein. When these individual motifs from proteins in the same
family are aligned without introducing gaps, the result is a block, with the term
“block™ referring to the alignment, not the individual sequences themselves. Obvi-
ously, an individual protein can contain one or more blocks, corresponding to each
of its functional or structural motifs.

The BLOCKS database itself is derived from the entries in PROSITE. When a
BLOCKS search is performed using a sequence of interest, the query sequence is
aligned against all the blocks in the database at all possible positions. For each
alignment, a score is calculated using a position-specific scoring matrix, and results
of the best matches are returned to the user. Searches can be performed optionally
against the PRINTS database, which includes information on more than 300 families
that do not have corresponding entries in the BLOCKS database. To ensure complete
coverage, it is recommended that both databases be searched.

BLOCKS searches can be performed using the BLOCKS Web site at the Fred
Hutchinson Cancer Research Center in Seattle. The Web site is straightforward, al-
lowing both sequence-based and keyword-based searches to be performed. If a DNA
sequence is used as the input, users can specify which genetic code to use and which
strand to search. Regardless of whether the query is performed via a sequence or via
keywords, a successful search will return the relevant block. An example is shown
in Figure 11.3. In this entry (for a nuclear hormone receptor called a steroid finger),
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ID NUCLEAR_RECEPTOR; BLOCK
AC BLO0O031A; distance from previous block=(4,603)

DE Nuclear hormones receptors DNA-binding region proteins.

BL CCR; width=33; seqgs=177; 99.5%=1562; strength=1584
CSRl_CAEEL|Ql737O ( 11) CAVCDDIATGKHYSVASCNGCKTFFRRALVNNR 41
FTFB_DROME|Q05192 { 376) CPICGDKISGFHYGIFSCESCKGFFKRTVQNRK 16
HR96_DROME|Q24143 { 7) CAVCGDKALGYNFNAVTCESCKAFFRRNALAKK 59
NER_HUMANIP55055 ( 87) CRVCGDKASGFHYNVLSCEGCKGFFRRSVVRGG 12
NHR2_CAEEL|Q10902 ( 105) CMVCGDNSTGYHYGVQSCEGCKGFFRRSVHKNI 16
ODR7_CAEEL|P41933 {( 331) QVCLSTHANGLHFGARTCAACAAFFRRTISDDK 85
TLL_DROME|P18102 ( 34) CKVCRDHSSGKHYGIYACDGCAGFFKRSIRRSR 27
YKCS_CAEEL|P41999 ( 18) CLVCSDISTGYHYGVPSCNGCKTFFRRTIMKNQ 20
YQN7_CAEEL|Q09528 ( 33) CLICGEPSTGKHYGIVACLGCKTFFRRAVVQRQ 24
YRG4_CAEEL|QO9587 ( 97) HVCSSPTANTLHFGGRSCKACAAFFRRSVSMSM 100

7UP1_DROME [P16375
7UP2_DROME | P16376
ARP1_HUMAN | P24468
ARP1_MOUSE |P43135

( 200) CVVCGDKSSGKHYGQFTCEGCKSFFKRSVRRNL
( 200) CVVCGDKSSGKHYGQFTCEGCKSFFKRSVRRNL
( 79) CVVCGDKSSGKHYGQFTCEGCKSFFKRSVRRNL
( 79) CVVCGDKSSGKHYGQFTCEGCKSFFKRSVRRNL
COT1_MOUSE |Q60632 ( 85) CVVCGDKSSGKHYGQFTCEGCKSFFKRSVRRNL
COTF_HUMAN |P10589 ( 86) CVVCGDKSSGKHYGQFTCEGCKSFFKRSVRRNL
EAR2_HUMAN |P10588 ( 56) CVVCGDKSSGKHYGVFTCEGCKSFFKRTIRRNL
EAR2_MOUSE |P43136 ( 57) CVVCGDKSSGKHYGVFTCEGCKSFFKRTIRRNL
HR78_DROME | Q24142 ( 52) CLVCGDRASGRHYGAISCEGCKGFFKRSIRKQL
TR2_HUMAN|P13056 ( 113) CVVCGDKASGRHYGAVTCEGCKGFFKRSIRKNL
TR4_HUMAN | P45116 ( 117) CVVCGDKASGRHYGAVSCEGCKGFFKRSVRKNL
TR4_MOUSE | P49117 ( 117) CVVCGDKASGRHYGAVSCEGCKGFFKRSVRKNL
TR4_RAT|P55094 ( 117) CVVCGDKASGRHYGAVSCEGCKGFFKRSVRKNL

(S NS NG NSNS T ) o) W W o W o) e Y

Figure 11.3. Structure of a typical BLOCKS entry. This is part of the entry for one block
associated with steroid fingers. The structure of the entry is discussed in the text.

the header lines marked ID, AC, and DE give, in order, a short description of the
family represented by this block, the BLOCKS database accession number, and a
longer description of the family. The BL line gives information regarding the original
sequence motif that was used to construct this particular block. The width and
seqgs parameters show how wide the block is, in residues, and how many sequences
are in the block, respectively. Some information then follows regarding the statistical
validity and the strength of the construct. Finally, a list of sequences is presented,
showing only the part of the sequence corresponding to this particular motif. Each
line begins with the SWISS-PROT accession number for the sequence, the number
of the first residue shown based on the entire sequence, the sequence itself, and a
position-based sequence weight. These values are scaled, with 100 representing the
sequence that is most distant from the group. Notice that there are blank lines be-
tween some of the sequences; parts of the overall alignment are clustered, and, in
each cluster, 80% of the sequence residues are identical.

CDD

Recently, NCBI introduced a new search service aimed at identifying conserved
domains within a protein sequence. The source database for these searches is called
the Conserved Domain Database or CDD. This is a secondary database, with entries
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derived from both Pfam (described above) and SMART (Simple Modular Architec-
ture Research Tool). SMART can be used to identify genetically mobile domains
and analyze domain architectures and is discussed in greater detail within the context
of comparative genomics in Chapter 15. The actual search is performed using reverse
position-specific BLAST (RPS-BLAST), which uses the query sequence to search a
database of precalculated PSSTs.

The CDD interface is simple, providing a box for the input sequence (alterna-
tively, an accession number can be specified) and a pull-down menu for selecting
the target database. If conserved domains are identified within the input sequence, a
graphic is returned showing the position of each conserved domain, followed by the
actual alignment of the query sequence to the target domain as generated by RPS-
BLAST. In these alignments, the default view shows identical residues in red,
whereas conservative substitutions are shown in blue; users can also select from a
variety of representations, including the traditional BLAST-style alignment display.
Hyperlinks are provided back to the source databases, providing more information
on that particular domain. This “CD Summary” page gives the underlying source
database information, references, the taxonomy spanned by this entry, and a sequence
entry representative of the group. In the lower part of the page, the user can construct
an alignment of sequences of interest from the group; alternatively, the user can
allow the computer to select the top-ranked sequences or a subset of sequences that
are most diverse within the group. If a three-dimensional structure corresponding to
the CD is available, it can be viewed directly using Cn3D (see Chapter 5). Clicking
on the CD link next to any of the entries on the CD Summary page will, in essence,
start the whole process over again, using that sequence to perform a new RPS-
BLAST search against CDD.

SECONDARY STRUCTURE AND FOLDING CLASSES

One of the first steps in the analysis of a newly discovered protein or gene product
of unknown function is to perform a BLAST or other similar search against the
public databases. However, such a search might not produce a match against a known
protein; if there is a statistically significant hit, there may not be any information in
the sequence record regarding the secondary structure of the protein, information
that is very important in the rational design of biochemical experiments. In the
absence of “‘known” information, there are methods available for predicting the
ability of a sequence to form a-helices and S-strands. These methods rely on ob-
servations made from groups of proteins whose three-dimensional structure has been
experimentally determined.

A brief review of secondary structure and folding classes is warranted before
the techniques themselves are discussed. As already alluded to, a significant number
of amino acids have hydrophobic side chains, whereas the main chain, or backbone,
is hydrophilic. The required balance between these two seemingly opposing forces
is accomplished through the formation of discrete secondary structural elements, first
described by Linus Pauling and colleagues in 1951 (Pauling and Corey, 1951). An
a-helix is a corkscrew-type structure with the main chain forming the backbone and
the side chains of the amino acids projecting outward from the helix. The backbone
is stabilized by the formation of hydrogen bonds between the CO group of each
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amino acid and the NH group of the residue four positions C-terminal (n + 4),
creating a tight, rodlike structure. Some residues form a-helices better than others;
alanine, glutamine, leucine, and methionine are commonly found in oa-helices,
whereas proline, glycine, tyrosine, and serine usually are not. Proline is commonly
thought of as a helix breaker because its bulky ring structure disrupts the formation
of n + 4 hydrogen bonds.

In contrast, the B-strand is a much more extended structure. Rather than hydro-
gen bonds forming within the secondary structural unit itself, stabilization occurs
through bonding with one or more adjacent 3-strands. The overall structure formed
through the interaction of these individual B-strands is known as a -pleated sheet.
These sheets can be parallel or antiparallel, depending on the orientation of the N-
and C-terminal ends of each component 3-strand. A variant of the B-sheet is the 3-
turn; in this structure the polypeptide chain makes a sharp, hairpin bend, producing
an antiparallel B-sheet in the process.

In 1976, Levitt and Chothia proposed a classification system based on the order
of secondary structural elements within a protein (Levitt and Chothia, 1976). Quite
simply, an a-structure is made up primarily from a-helices, and a 3-structure is made
up of primarily B-strands. Myoglobin is the classic example of a protein composed
entirely of a-helices, falling into the « class of structures (Takano, 1977). Plasto-
cyanin is a good example of the B class, where the hydrogen-bonding pattern be-
tween eight (-strands form a compact, barrel-like structure (Guss and Freeman,
1983). The combination class, «/f3, is made up of primarily B-strands alternating
with a-helices. Flavodoxin is a good example of an a/B-protein; its B-strands form
a central -sheet, which is surrounded by a-helices (Burnett et al., 1974).

Predictive methods aimed at extracting secondary structural information from
the linear primary sequence make extensive use of neural networks, traditionally
used for analysis of patterns and trends. Basically, a neural network provides com-
putational processes the ability to “learn” in an attempt to approximate human learn-
ing versus following instructions blindly in a sequential manner. Every neural net-
work has an input layer and an output layer. In the case of secondary structure
prediction, the input layer would be information from the sequence itself, and the
output layer would be the probabilities of whether a particular residue could form a
particular structure. Between the input and output layers would be one or more
hidden layers where the actual “‘learning’ would take place. This is accomplished
by providing a training data set for the network. Here, an appropriate training set
would be all sequences for which three-dimensional structures have been deduced.
The network can process this information to look for what are possibly weak rela-
tionships between an amino acid sequence and the structures they can form in a
particular context. A more complete discussion of neural networks as applied to
secondary structure prediction can be found in Kneller et al. (1990).

nnpredict

The nnpredict algorithm uses a two-layer, feed-forward neural network to assign the
predicted type for each residue (Kneller et al., 1990). In making the predictions, the
server uses a FASTA format file with the sequence in either one-letter or three-letter
code, as well as the folding class of the protein («, B, or a/3). Residues are classified
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as being within an a-helix (H), a B-strand (E), or neither (—). If no prediction can
be made for a given residue, a question mark (?) is returned to indicate that an
assignment cannot be made with confidence. If no information is available regarding
the folding class, the prediction can be made without a folding class being specified;
this is the default. For the best-case prediction, the accuracy rate of nnpredict is
reported as being over 65%.

Sequences are submitted to nnpredict by either sending an E-mail message to
nnpredict@celeste.ucsf.edu or by using the Web-based submission form. With the
use of flavodoxin as an example, the format of the E-mail message would be as
follows:

option: a/b

>flavodoxin - Anacystis nidulans
AKIGLFYGTQTGVTQTIAESIQQEFGGESIVDLNDIANADASDLNAYDYLITIGCPTWNVGELQSDWEGIY
DDLDSVNFQGKKVAYFGAGDQVGYSDNFQDAMGILEEKISSLGSQTVGYWPIEGYDFNESKAVRNNQFVG
LATIDEDNQPDLTKNRIKTWVSQLKSEFGL

The Option line specifies the folding class of the protein: n uses no folding class for
the prediction, a specifies a, b specifies B, and a/b specifies a/3. Only one
sequence may be submitted per E-mail message. The results returned by the server
are shown in modified form in Figure 11.4.

PredictProtein

PredictProtein (Rost et al., 1994) uses a slightly different approach in making its
predictions. First, the protein sequence is used as a query against SWISS-PROT to
find similar sequences. When similar sequences are found, an algorithm called
MaxHom is used to generate a profile-based multiple sequence alignment (Sander
and Schneider, 1991). MaxHom uses an iterative method to construct the alignment:
After the first search of SWISS-PROT, all found sequences are aligned against the
query sequence and a profile is calculated for the alignment. The profile is then used
to search SWISS-PROT again to locate new, matching sequences. The multiple align-
ment generated by MaxHom is subsequently fed into a neural network for prediction
by one of a suite of methods collectively known as PHD (Rost, 1996). PHDsec, the
method in this suite used for secondary structure prediction, not only assigns each
residue to a secondary structure type, it provides statistics indicating the confidence
of the prediction at each position in the sequence. The method produces an average
accuracy of better than 72%; the best-case residue predictions have an accuracy rate
of over 90%.

Sequences are submitted to PredictProtein either by sending an E-mail message
or by using a Web front end. Several options are available for sequence submission;
the query sequences can be submitted as single-letter amino acid code or by its
SWISS-PROT identifier. In addition, a multiple sequence alignment in FASTA format
or as a PIR alignment can also be submitted for secondary structure prediction.

The input message, sent to predictprotein@embl-heidelberg.de, takes the follow-
ing form:
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Alpha 6

Beta 5

Figure 11.4. Comparison of secondary structure predictions by various methods. The sequence of flavodoxin was used as the query and

is shown on the first line of the alignment. For each prediction, H denotes an a-helix, E a B-strand, and T a B-turn; all other positions are
assumed to be random coil. Correctly assigned residues are shown in inverse type. The methods used are listed along the left side of the

alignment and are described in the text. At the bottom of the figure is the secondary structure assignment given in the PDB file for

flavodoxin (10FV, Smith et al., 1983).

10FV
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do NOT align

# FASTA list homeodomain proteins

>ANTP
-—-—-KRGROQTYTRYQTLELEKEFHFNRYLTRRRRIETAHALSLTERQIKIWFQNRRMKWKK
>HDD
MDEKRPRTAFSSEQLARLKREFNENRYLTERRRQQLSSELGLNEAQIKIWFQNKRAKIKK
>DLX
-KIRKPRTIYSSLQLQALNHRFQQTQYLALPERAELAASLGLTQTQVKIWFQNKRSKFKK
>EFTT
--—-RKRRVLFSQAQVYELERRFKQQKYLSAPEREHLASMIHLTPTQVKIWFQNHRYKMKR
>Paxb
--LORNRTSFTQEQIEALEKEFERTHYPDVFARERLAAKIDLPEARIQVWFSNRRAKWRR

Above is an example of a FASTA-formatted multiple sequence alignment of
homeodomain proteins submitted for secondary structure prediction. After the name,
affiliation, and address lines, the # sign signals to the server that a sequence in one-
letter code follows. The sequence format is essentially FASTA, except that blanks
are not allowed. For this alignment, the phrase do NOT align before the line start-
ing with # assures that the alignment will not be realigned. Nothing is allowed to
follow the sequence. The output sent as an E-mail message is quite copious but
contains a large amount of pertinent information. The results can also be retrieved
from an ftp site by adding a qualifier return nomail in any line before the line
starting with #. This might be a useful feature for those E-mail services that have
difficulty handling very large output files. The format for the output file can be plain
text or HTML files with or without PHD graphics.

The results of the MaxHom search are returned, complete with a multiple align-
ment that may be of use in further study, such as profile searches or phylogenetic
studies. If the submitted sequence has a known homolog in PDB, the PDB identifiers
are furnished. Information follows on the method itself and then the actual prediction
will follow. In a recent release, the output can also be customized by specifying
available options. Unlike nnpredict, PredictProtein returns a ‘“‘reliability index of
prediction” for each position ranging from 0 to 9, with 9 being the maximum con-
fidence that a secondary structure assignment has been made correctly. The results
returned by the server for this particular sequence, as compared with those obtained
by other methods, are shown in modified form in Figure 11.4.

PREDATOR

The PREDATOR secondary structure prediction algorithm is based on recognition
of potentially hydrogen-bonded residues in the amino acid sequence (Frishman and
Argos, 1997). It uses database-derived statistics on residue-type occurrences in dif-
ferent classes of local hydrogen-bonded structures. The novel feature of this method
is its reliance on local pairwise alignment of the sequence to be predicted between
each related sequence. The input for this program can be a single sequence or a set
of unaligned, related sequences. Sequences can be submitted to the PREDATOR
server either by sending an E-mail message to predator@embl-heidelberg.de or by
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using a Web front end. The input sequences can be either FASTA, MSF, or CLUS-
TAL format. The mean prediction accuracy of PREDATOR in three structural states
is 68% for a single sequence and 75% for a set of related sequences.

PSIPRED

The PSIPRED method, developed at the University of Warwick, UK, uses the knowl-
edge inferred from PSI-BLAST (Altschul et al., 1997; cf. Chapter 8) searches of the
input sequence to perform predictions. PSIPRED uses two feedforward neural net-
works to perform the analysis on the profile obtained from PSI-BLAST. Sequences
can be submitted through a simple Web front end, in either single-letter raw format
or in FASTA format. The results from the PSIPRED prediction are returned as a text
file in an E-mail message. In addition, a link is also provided in the E-mail message
to a graphical representation of the secondary structure prediction, visualized using
a Java application called PSIPREDview. In this representation, the positions of the
helices and strands are schematically represented above the target sequence. The
average prediction accuracy for PSIPRED in three structural states is 76.5%, which
is higher than any of the other methods described here.

SOPMA

The Protein Sequence Analysis server at the Centre National de la Recherche Scien-
tifique (CNRS) in Lyons, France, takes a unique approach in making secondary
structure predictions: rather than using a single method, it uses five, the predictions
from which are subsequently used to come up with a ‘“consensus prediction.”” The
methods used are the Garnier—Gibrat—Robson (GOR) method (Garnier et al., 1996),
the Levin homolog method (Levin et al., 1986), the double-prediction method (De-
léage and Roux, 1987), the PHD method described above as part of PredictProtein,
and the method of CNRS itself, called SOPMA (Geourjon and Déleage, 1995).
Briefly, this self-optimized prediction method builds subdatabases of protein se-
quences with known secondary structures; each of the proteins in a subdatabase is
then subjected to secondary structure prediction based on sequence similarity. The
information from the subdatabases is then used to generate a prediction on the query
sequence.

The method can be run by submitting just the sequence itself in single-letter
format to deleage@ibcp.fr, using SOPMA as the subject of the mail message, or by
using the SOPMA Web interface. The output from each of the component predictions,
as well as the consensus, is shown in Figure 11.4.

Comparison of Methods

On the basis of Figure 11.4, it is immediately apparent that all the methods described
above do a relatively good, but not perfect, job of predicting secondary structures.
Where no other information is known, the best approach is to perform predictions
using all the available algorithms and then to judge the validity of the predictions
in comparison to one another. Flavodoxin was selected as the input query because
it has a relatively intricate structure, falling into the o/B-folding class with its six a-
helices and five 3-sheets. Some assignments were consistently made by all methods;
for example, all the methods detected 81, B3, B4, and «5 fairly well. However, some
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methods missed some elements altogether (e.g., nnpredict with a2, &3, and a4), and
some predictions made no biological sense (e.g., the double-prediction method and
B4, where helices, sheets, and turns alternate residue by residue). PredictProtein and
PSIPRED, which both correctly found all the secondary structure elements and, in
several places, identified structures of the correct length, appear to have made the
best overall prediction. This is not to say that the other methods are not useful or
not as good; undoubtedly, in some cases, another method would have emerged as
having made a better prediction. This approach does not provide a fail-safe method
of prediction, but it does reinforce the level of confidence resulting from these
predictions.

A new Web-based server, Jpred, integrates six different structure prediction meth-
ods and returns a consensus prediction based on simple majority rule. The usefulness
of this server is that it automatically generates the input and output requirements for
all six prediction algorithms, which can be an important feature when handling large
data sets. The input sequence for Jpred can be a single protein sequence in FASTA
or PIR format, a set of unaligned sequences in PIR format, or a multiple sequence
alignment in MSF or BLC format. In case of a single sequence, the server first
generates a set of related sequences by searching the OWL database using the
BLASTP algorithm. The sequence set is filtered using SCANPS and then pairwise-
compared using AMPS. Finally, the sequence set is clustered using a 75% identity
cutoff value to remove any bias in the sequence set, and the remaining sequences
are aligned using CLUSTAL W. The Jpred server runs PHD (Rost and Sander, 1993),
DSC (King and Sternberg, 1996), NNSSP (Salamov and Solovyev, 1995), PRED-
ATOR (Frishman and Argos, 1997), ZPRED (Zvelebil et al., 1987), and MULPRED
(Barton, 1988). The results from the Jpred server is returned as a text file in an E-
mail message; a link is also provided to view the colored graphical representation
in HTML or PostScript file format. The consensus prediction from the Jpred server
has an accuracy of 72.9% in the three structural states.

SPECIALIZED STRUCTURES OR FEATURES

Just as the position of a-helices and B-sheets can be predicted with a relatively high
degree of confidence, the presence of certain specialized structures or features, such
as coiled coils and transmembrane regions, can be predicted. There are not as many
methods for making such predictions as there are for secondary structures, primarily
because the rules of folding that induce these structures are not completely under-
stood. Despite this, when query sequences are searched against databases of known
structures, the accuracy of prediction can be quite high.

Coiled Coils

The COILS algorithm runs a query sequence against a database of proteins known
to have a coiled-coil structure (Lupas et al., 1991). The program also compares query
sequences to a PDB subset containing globular sequences and on the basis of the
differences in scoring between the PDB subset and the coiled coils database, deter-
mines the probability with which the input sequence can form a coiled coil. COILS
can be downloaded for use with VAX/VMS or may more easily be used through a
simple Web interface.
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The program takes sequence data in GCG or FASTA format; one or more se-
quences can be submitted at once. In addition to the sequences, users may select one
of two scoring matrices: MTK, based on the sequences of myosin, tropomyosin, and
keratin, or MTIDK, based on myosin, tropomyosin, intermediate filaments types I—
V, desmosomal proteins, and kinesins. The authors cite a trade-off between the scor-
ing matrices, with MTK being better for detecting two-stranded structures and
MTIDK being better for all other cases. Users may invoke an option that gives the
same weight to the residues at the a and d positions of each coil (normally hydro-
phobic) as that given to the residues at the b, c, e, f, and g positions (normally
hydrophilic). If the results of running COILS both weighted and unweighted are
substantially different, it is likely that a false positive has been found. The authors
caution that COILS is designed to detect solvent-exposed, left-handed coiled coils
and that buried or right-handed coiled coils may not be detected. When a query is
submitted to the Web server, a prediction graph showing the propensity toward the
formation of a coiled coil along the length of the sequence is generated.

A slightly easier to interpret output comes from MacStripe, a Macintosh-based
application that uses the Lupas COILS method to make its predictions (Knight,
1994). MacStripe takes an input file in FASTA, PIR, and other common file formats
and, like COILS, produces a plot file containing a histogram of the probability of
forming a coiled coil, along with bars showing the continuity of the heptad repeat
pattern. The following portion of the statistics file generated by MacStripe uses the
complete sequence of GCN4 as an example:

89 89 L5a0.760448 0.000047
90 90 D5Db 0.760448 0.000047
91 91 D5c 0.760448 0.000047
92 92A5d0.760448 0.000047
93 93V 5e0.760448 0.000047
94 94V 5 £ 0.760448 0.000047
95 95 E5g 0.760448 0.000047
96 96 S5a0.760448 0.000047
97 97F5b 0.760448 0.000047
98 98 F 5c 0.774300 0.000058
99 99S55d0.812161 0.000101
100 100 S5e0.812161 0.000101
101 101 s5 £0.812161 0.000101
102 102 T5g 0.812161 0.000101

The columns, from left to right, represent the residue number (shown twice), the
amino acid, the heptad frame, the position of the residue within the heptad (a-b-
c-d-e-f-g), the Lupas score, and the Lupas probability. In this case, from the
fifth column, we can easily discern a heptad repeat pattern. Examination of the results
for the entire GCN4 sequence shows that the heptad pattern is fairly well maintained
but falls apart in certain areas. The statistics should not be ignored; however, the
results are easier to interpret if the heptad pattern information is clearly presented.
It is possible to get a similar type of output from COILS but not through the COILS
Web server; instead, a C-based program must be installed on an appropriate Unix
machine, a step that may be untenable for many users.
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Transmembrane Regions

The Kyte-Doolittle TGREASE algorithm discussed above is very useful in detecting
regions of high hydrophobicity, but, as such, it does not exclusively predict trans-
membrane regions because buried domains in soluble, globular proteins can also be
primarily hydrophobic. We consider first a predictive method specifically for the
prediction of transmembrane regions. This method, TMpred, relies on a database of
transmembrane proteins called TMbase (Hofmann and Stoffel, 1993). TMbase, which
is derived from SWISS-PROT, contains additional information on each sequence
regarding the number of transmembrane domains they possess, the location of these
domains, and the nature of the flanking sequences. TMpred uses this information in
conjunction with several weight matrices in making its predictions.

The TMpred Web interface is very simple. The sequence, in one-letter code, is
pasted into the query sequence box, and the user can specify the minimum and
maximum lengths of the hydrophobic part of the transmembrane helix to be used in
the analysis. The output has four sections: a list of possible transmembrane helices,
a table of correspondences, suggested models for transmembrane topology, and a
graphic representation of the same results. When the sequence of the G-protein-
coupled receptor (P51684) served as the query, the following models were generated:

2 possible models considered, only significant TM-segments used

————— > STRONGLY preferred model: N-terminus outside
7 strong transmembrane helices, total score : 14211
# from to length score orientation

1 55 74 (20) 2707 o-1
2 83 104 (22) 1914 i-o
3 120 141 (22) 1451 o-1i
4 166 184 (19) 2170 i-o
5 212 235 (24) 2530 o-1
6 255276 (22) 2140 i-o
7 299 319 (21) 1299 o-1i

————— > alternative model

7 strong transmembrane helices, total score : 12079
# from to length score orientation

1 47 69 (23) 2494 i-o

2 84 104 (21) 1470 o-1

3 123 141 (19) 1383 i-o

4 166 185 (20) 1934 o-1

5 219 236 (18) 2474 i-o

6 252274 (23) 1386 o-1

7 303 319 (17) 938 i-o

Each of the proposed models indicates the starting and ending position of each
segment, along with the relative orientation (inside-to-outside or outside-to-inside)
of each segment. The authors appropriately caution that the models are based on the
assumption that all transmembrane regions were found during the prediction. These
models, then, should be considered in light of the raw data also generated by this
method.
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PHDtopology

One of the most useful methods for predicting transmembrane helices is PHDtopol-
ogy, which is related to the PredictProtein secondary structure prediction method
described above. Here, programs within the PHD suite are now used in an obviously
different way to make a prediction on a membrane-bound rather than on a soluble
protein. The method has reported accuracies that are nearly perfect: the accuracy of
predicting a transmembrane helix is 92% and the accuracy for a loop is 96%, giving
an overall two-state accuracy of 94.7%. One of the features of this program is that,
in addition to predicting the putative transmembrane regions, it indicates the orien-
tation of the loop regions with respect to the membrane.

As before, PHDtopology predictions can be made using either an E-mail server
or a Web front end. If an E-mail server is used, the format is identical to that shown
for PredictProtein above, except that the line predict htm topology must pre-
cede the line beginning with the pound sign. Regardless of submission method,
results are returned by E-mail. An exampie of the output returned by PHDtopology
is shown in Figure 11.5.

Signal Peptides

The Center for Biological Sequence Analysis at the Technical University of Denmark
has developed SignalP, a powerful tool for the detection of signal peptides and their

Joe Buzzcut

National Human Genome Research Institute, NIH

buzzcut@nhgri.nih.gov

predict htm topology

# pendrin
MAAPGGRSEPPQLPEYSCSYMVSRPVYSELAFQOOHERRLQERKTLRESLAKCCSCSRKRAFGVLKTLVPILEWLPKYRV
KEWLLSDVISGVSTGLVATLQGMAYALLAAVPVGYGLYSAFFPILTYFIFGTSRHISVGPFPVVSLMVGSVVLSMAP. .

.37. .38. .39. .40. .41, .42
AA ‘YSLKYDYPLDGNQELIALGLGNIVCGVFRGFAGSTALSRSAVQESTGGKTQIAGLIGAII|
PHD htm HHHHHHHHHHHHHH HHHHHHHHHHl

Rel htm |368899999999999998641104667777655431257778887777621467788888|
detail: | |
prH htm [310000000000000000124457888888877765321110000111135788899999 |
prL htm |689999999999999999875542111111122234678889999888864211100000 |

PHDThtm \1111111111111111111TTTTTTTTTTTTTTTTTTOooooooooooooooTTTTTTTT|

Figure 11.5. Partial output from a PHDtopology prediction. The input sequence is pendrin,
which is responsible for Pendred syndrome (Everett et al., 1998). The row labeled Aa shows
a portion of the input sequence, and the row labeled Rel htm gives the reliability index
of prediction at each position of the protein; values range from 0 to 9, with 9 representing
the maximum possible confidence for the assignment at that position. The last line, labeled
PHDThm, contains one of three letters: a T represents a transmembrane region, whereas an
i or o represents the orientation of the loop with respect to the membrane (inside or
outside).
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cleavage sites (Nielsen et al., 1997). The algorithm is neural-network based, using
separate sets of Gram-negative prokaryotic, Gram-positive prokaryotic, and eukar-
yotic sequences with known signal sequences as the training sets. SignalP predicts
secretory signal peptides and not those that are involved in intracellular signal
transduction.

Using the Web interface, the sequence of the human insulin-like growth factor
IB precursor (somatomedin C, P05019), whose cleavage site is known, was submitted
to SignalP for analysis. The eukaryotic training set was used in the prediction, and
the results of the analysis are as follows:

khkkhkk kkhkk khkhkkhkkhhkhkkhhkkhkkhx* SlgnalP predictions khkkhkkhkkkk khhkkhkhhkkhkkhhkkhkkhx*

Using networks trained on euk data
>IGF-IB length = 195
# posaaCsSyY

46 A 0.3650.823 0.495
47 T 0.450 0.654 0.577
48 A0.176 0.564 0.369
49 G 0.925 0.205 0.855
50P 0.1850.163 0.376

< Is the sequence a signal peptide?
# Measure Position Value Cutoff Conclusion
max. C 49 0.925 0.37 YES
max. Y 49 0.855 0.34 YES
max. S 37 0.973 0.88 YES
mean S 1 - 48 0.550 0.48 YES
# Most likely cleavage site between pos. 48 and 49: ATA-GP

In the first part of the output, the column labeled C is a raw cleavage site score.
The value of C is highest at the position C-terminal to the cleavage site. The column
labeled S contains the signal peptide scores, which are high at all positions before
the cleavage site and very low after the cleavage site. S is also low in the N-termini
of nonsecretory proteins. Finally, the Y column gives the combined cleavage site
score, a geometric average indicating when the C score is high and the point at
which the S score shifts from high to low. The end of the output file asks the question,
“Is the sequence a signal peptide?”” On the basis of the statistics, the most likely
cleavage site is deduced. On the basis of the SWISS-PROT entry for this protein,
the mature chain begins at position 49, the same position predicted to be the most
likely cleavage site by SignalP.

Nonglobular Regions

The use of the program SEG in the masking of low-complexity segments prior to
database searches was discussed in Chapter 8. The same algorithm can also be used
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1-307 MAGAIASRMSFSSLKRKQPKTFTVRIVTMD
AEMEFNCEMKWKGKDLFDLVCRTLGLRETW
FFGLQYTIKDTVAWLKMDKKVLDHDVSKEE
PVTFHFLAKFYPENAEEELVQEITQHLFFL
QVKKQILDEKIYCPPEASVLLASYAVQAKY
GDYDPSVHKRGFLAQEELLPKRVINLYQMT
PEMWEERITAWYAEHRGRARDEAEMEYLKI
AQDLEMYGVNYFATIRNKKGTELLLGVDALG
LHIYDPENRLTPKISFPWNEIRNISYSDKE
FTIKPLDKKIDVFKFNSSKLRVNKLILQLC
IGNHDLF
mrrrkadslevggqmkagareekarkgmerq 308-478
rlarekgmreeaertrdelerrllgmkeea
tmanealmrseetadllaekaqgiteeeakl
lagkaaecaeqgemgrikatairteeekrlme
gkvleaevlalkmaeeserrakeadqlkqgd
lgeareaerrakgklleiatk
479-496 PTYPPMNPIPAPLPPDIP
sfnligdslsfdfkdtdmkrlsmeiekekv 497-587
eymekskhlgeqglnelkteiealklkeret
aldilhnensdrggsskhntikkltlgsak
s
588-595 RVAFFEEL

Figure 11.6. Predicted nonglobular regions for the protein product of the neurofibro-
matosis type 2 gene (L11353) as deduced by SEG. The nonglobular regions are shown in
the left-hand column in lowercase. Numbers denote residue positions for each block.

to detect putative nonglobular regions of protein sequences by altering the trigger
window length W, the trigger complexity K,, and extension complexity K,. When
the command seg sequence.txt 45 3.4 3.75 is received, SEG will use a
longer window length than the default of 12, thereby detecting long, nonglobular
domains. An example of using SEG to detect nonglobular regions is shown in Figure
11.6.

TERTIARY STRUCTURE

By far the most complex and technically demanding predictive method based on
protein sequence data has to do with structure prediction. The importance of being
able to adequately and accurately predict structure based on sequence is rooted in
the knowledge that, whereas sequence may specify conformation, the same confor-
mation may be specified by multiple sequences. The ideas that structure is conserved
to a much greater extent than sequence and that there is a limited number of back-
bone motifs (Chothia and Lesk, 1986; Chothia, 1992) indicate that similarities be-
tween proteins may not necessarily be detected through traditional, sequence-based
methods only. Deducing the relationship between sequence and structure is at the
root of the ““protein-folding problem,’” and current research on the problem has been
the focus of several reviews (Bryant and Altschul, 1995; Eisenhaber et al., 1995;
Lemer et al., 1995).

The most robust of the structure prediction techniques is homology model build-
ing or “threading” (Bryant and Lawrence, 1993; Fetrow and Bryant, 1993; Jones
and Thornton, 1996). The threading methods search for structures that have a similar
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fold without apparent sequence similarity. This method takes a query sequence whose
structure is not known and threads it through the coordinates of a target protein
whose structure has been solved, either by X-ray crystallography or NMR imaging.
The sequence is moved position by position through the structure, subject to some
predetermined physical constraints; for example, the lengths of secondary structure
elements and loop regions may be either fixed or varying within a given range. For
each placement of sequence against structure, pairwise and hydrophobic interactions
between nonlocal residues are determined. These thermodynamic calculations are
used to determine the most energetically favorable and conformationally stable align-
ment of the query sequence against the target structure. Programs such as this are
computationally intensive, requiring, at a minimum, a powerful UNIX workstation;
they also require knowledge of specialized computer languages. The threading meth-
ods are useful when the sequence-based structure prediction methods fail to identify
a suitable template structure.

Although techniques such as threading are obviously very powerful, their current
requirements in terms of both hardware and expertise may prove to be obstacles to
most biologists. In an attempt to lower the height of the barrier, easy-to-use programs
have been developed to give the average biologist a good first approximation for
comparative protein modeling. (Numerous commercial protein structure analysis
tools, such as WHAT-IF and LOOK, provide advanced capabilities, but this discus-
sion is limited to Web-based freeware.)

The use of SWISS-MODEL, a program that performs automated sequence-struc-
ture comparisons (Peitsch, 1996), is a two-step process. The First Approach mode is
used to determine whether a sequence can be modeled at all; when a sequence is
submitted, SWISS-MODEL compares it with the crystallographic database (ExPdb),
and modeling is attempted only if there is a homolog in ExPdb to the query protein.
The template structures are selected if there is at least 25% sequence identity in a
region more than 20 residues long. If the first approach finds one or more appropriate
entries in ExPdb, atomic models are built and energy minimization is performed to
generate the best model. The atomic coordinates for the model as well as the struc-
tural alignments are returned as an E-mail message. Those results can be resubmitted
to SWISS-MODEL using its Optimize mode, which allows for alteration of the
proposed structure based on other knowledge, such as biochemical information. An
example of the output from SWISS-MODEL is shown in Figure 11.7.

Another automated protein fold recognition method, developed at UCLA, in-
corporates predicted secondary structural information on the probe sequence in ad-
dition to sequence-based matches to assign a probable protein fold to the query
sequence. In this method, correct assignment of the fold depends on the ranked scores
generated for the probe sequence, based on its compatibility with each of the struc-
tures in a library of target three-dimensional structures. The inclusion of the predicted
secondary structure in the analysis improves fold assignment by about 25%. The
input for this method is a single protein sequence submitted through a Web front
end. A Web page containing the results is returned to the user, and the results are
physically stored on the UCLA server for future reference.

The second approach compares structures with structures, in the same light as
the vector alignment search tool (VAST) discussed in Chapter 5 does. The DALI
algorithm looks for similar contact patterns between two proteins, performs an op-
timization, and returns the best set of structure alignment solutions for those proteins
(Holm and Sander, 1993). The method is flexible in that gaps may be of any length,
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TARGET 1 QRRQ RTHFTSQQLQ QLEATFQRNR YPDMSTREET AVWTNLTEAR
11FJL 0 KQRRS RTTFSASQLD ELERAFERTQ YPDIYTREEL AQRTNLTEAR
21FJL 1 QRRS RTTFSASQLD ELERAFERTQ YPDIYTREEL AQRTNLTEAR
11B72 1 ARTFDWMKVL RTNFTTRQLT ELEKEFHFNK YLSRARRVEI AATLELNETQ
22HDD 1 KRP RTAFSSEQLA RLKREFNENR YLTERRRQQI SSELGLNEAQ
12HOA 0 MRKRG RQTYTRYQTL ELEKEFHFNR YLTRRRRIEI AHALSLTERQ
. * ., % * * * .. * x

TARGET
11FJL hhhhhh hhhhhhhhh hhhhhhhh hhhhh hhhh
21FJL hhhhhh hhhhhhhhh hhhhhhhh hhhhh hhhh
11B72 hhhhhh hhhhhhhhh hhhhhhhh hhhhh hhhh
22HDD hhhhhh hhhhhhhhh hhhhhhhh hhhhh hhhh
12HOA hhhhhh hhhhhhhhh hhhhhhhh hhhh hhhh
ATOM 1 H1 GLN 1 9.226 107.177 13.966 1.00 99.00
ATOM 2 H2 @GLN 1 10.769 107.671 13.751 1.00 99.00
ATOM 3 N GLN 1 9.824 107.785 13.444 1.00 25.00
ATOM 4 H3 GLN 1 9.549 108.738 13.592 1.00 99.00
ATOM 5 CA GLN 1 9.728 107.473 11.999 1.00 25.00
ATOM 6 CB GLN 1 8.265 107.520 11.538 1.00 25.00
ATOM 7 CG GLN 1 7.468 106.270 11.932 1.00 25.00
ATOM 8 CD GLN 1 8.001 104.970 11.312 1.00 25.00
ATOM 9 OEl GLN 1 8.748 104.928 10.343 1.00 25.00
ATOM 10 NE2 GLN 1 7.629 103.853 11.899 1.00 25.00
ATOM 11 HE21GLN 1 7.979 103.008 11.502 1.00 99.00
ATOM 12 HE22GLN 1 7.015 103.860 12.683 1.00 99.00

Figure 11.7. Molecular modeling using SWISS-MODEL. The input sequence for the struc-
ture prediction is the homeodomain region of human PITX2 protein. The output from
SWISS-MODEL contains a text file containing a multiple sequence alignment, showing the
alignment of the query against selected template structures from the Protein Data Bank
(top). Also provided as part of the output is an atomic coordinate file for the target struc-
ture (center). In this example, the atomic coordinates of the target structure have been
used to build a surface representation of the derived model using GRASP (lower left) and
a ribbon representation of the derived model using RASMOL (lower right). (See color plate.)
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and it allows for alternate connectivities between aligned segments, thereby facili-
tating identification of specific domains that are similar in two different proteins,
even if the proteins as a whole are dissimilar. The DALI Web interface will perform
the analysis on either two sets of coordinates already in PDB or by using a set of
coordinates in PDB format submitted by the user. Alternatively, if both proteins of
interest are present in PDB, their precomputed structural neighbors can be found by
accessing the FSSP database of structurally aligned protein fold families (Holm and
Sander, 1994), an ‘“‘all-against-all”” comparison of PDB entries.

The final method to be discussed here expands on the PHD secondary structure
method discussed above. In the TOPITS method (Rost, 1995), a searchable database
is created by translating the three-dimensional structure of proteins in PDB into one-
dimensional ‘“‘strings” of secondary structure. Then, the secondary structure and sol-
vent accessibility of the query sequence is determined by the PHD method, with the
results of this computation also being stored as a one-dimensional string. The query
and target strings are then aligned by dynamic programming, to make the structure
prediction. The results are returned as a ranked list, indicating the optimal alignment
of the query sequence against the target structure, along with a probability estimate
(Z-score) of the accuracy of the prediction.

The methods discussed here are fairly elementary, hence their speed in returning
results and their ability to be adapted to a Web-style interface. Their level of per-
formance is impressive in that they often can detect weak structural similarities
between proteins. Although the protein-folding problem is nowhere near being
solved, numerous protein folds can reliably be identified using intricate methods that
are continuously being refined. Because different methods proved to have different
strengths, it is always prudent to use a ‘‘consensus approach,’ similar to the approach
used in the secondary structure prediction examples given earlier. The timing of these
computational developments is quite exciting, inasmuch as concurrence with the
imminent completion of the Human Genome Project will give investigators a pow-
erful handle for predicting structure-function relationships as putative gene products
are identified.

INTERNET RESOURCES FOR TOPICS PRESENTED IN CHAPTER 11

PREDICTION OF PHYSICAL PROPERTIES
Compute pI/MW http://www.expasy.ch/tools/pi_tool.html

MOWSE http://srs.hgmp.mrc.ac.uk/cgi-bin/mowse
PeptideMass http://www.expasy.ch/tools/peptide-mass.html
TGREASE Jftp:/fftp.virginia.edu/pub/fasta/

SAPS http://www.isrec.isb-sib.ch/software/SAPS _form.html
PREDICTION OF PROTEIN IDENTITY BASED ON COMPOSITION
AACompldent http://www.expasy.ch/tools/aacomp/
AACompSim http://www.expasy.ch/tools/aacsim/
PROPSEARCH http://'www.embl-heidelberg.de/prs.html
MOTIFS AND PATTERNS

BLOCKS http://blocks.fhcrc.org

Pfam http://www.sanger.ac.uk/Software/Pfam/

PRINTS http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/PRINTS. html
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ProfileScan http://www.isrec.isb-sib.ch/software/PFSCAN _form.html

PREDICTION OF SECONDARY STRUCTURE AND FOLDING CLASSES

nnpredict http://www.cmpharm.ucsf.edu/~nomi/nnpredict. html

PredictProtein http://'www.embl-heidelberg.de/predictprotein/

SOPMA http://pbil.ibcp.fr/

Jpred http://jura.ebi.ac.uk:8888/

PSIPRED http:/finsulin.brunel.ac.uk/psipred

PREDATOR http://www.embl-heidelberg.de/predator/predator _info.html

PREDICTION OF SPECIALIZED STRUCTURES OR FEATURES

COILS http://'www.ch.embnet.org/software/COILS _form.html

MacStripe http://'www.york.ac.uk/depts/biol/units/coils/mstr2.html

PHDtopology http://www.embl-heidelberg.de/predictprotein

SignalP http://www.cbs.dtu.dk/services/Signal P/

TMpred http://www.isrec.isb-sib.ch/ftp-server/tmpred/www/TMPRED _
Sform.html

STRUCTURE PREDICTION

DALI http://'www?2.ebi.ac.uk/dali/

Bryant-Lawrence ftp://ncbi.nlm.nih.gov/pub/pkb/

FSSP http://www?2.ebi.ac.uk/dali/fssp/

UCLA-DOE http://fold.doe-mbi.ucla.edu/Home

SWISS-MODEL http://www.expasy.ch/swissmod/SWISS-MODEL.html

TOPITS http://www.embl-heidelberg.de/predictprotein/

PROBLEM SET

The sequence analyzed in the problem set in Chapter 10 yields at least one protein
translation. Characterize this protein translation by answering the following ques-
tions.

1. Use ProtParam to determine the basic physicochemical properties of the unknown
(leave the def line out when pasting the sequence into the query box).
e What is the molecular weight (in kilodaltons) and predicted isoelectric point
(pD) for the protein?

2. Based on the pl and the distribution of charged residues, would this unknown
possibly be involved in binding to DNA? Perform a BLASTP search on the
unknown, using SWISS-PROT as the target database. Run BLASTP using pair-
wise as the Alignment View. For each part of this question, consider the first
protein in the hit list having a non-zero E-value.

e What is the identity of this best, non-zero E-value hit, and what percent identity
does the unknown share with this protein? For each alignment given, show the
percent identity and the overall length of the alignment.

* Based on the BLASTP results alone, can any general observations be made
regarding the putative function or cellular role of the unknown? Do not just
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name the unknown—tell what you think the function of the unknown might be
in the cell, based on all of the significant hits in the BLASTP results.

3. Does ProfileScan yield any additional information about the domain structure of
this protein?
* What types of domains were found? How many of each of these domains are
present in the unknown?
* Does the protein contain any low-complexity regions? If so, where?
* Following the PDOC links to the right of the found domains, can any conclu-
sions be made as to the cellular localization of this protein?

4. Does this protein have a putative signal sequence, based on SignalP? If so, what
residues comprise the signal sequence? Is the result obtained from SignalP con-
sistent with the BLASTP results and any associated GenBank entries?

5. Submit the sequence of the unknown to PHDtopology. On the basis of the results,
draw a schematic of the protein, showing
* the approximate location of any putative transmembrane helices and
* the orientation of the N- and C-termini with respect to the membrane.
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The benefits arising from the rapid generation of large numbers of low-quality cDNA
sequences were not universally recognized when the concept was originally proposed
in the late 1980s. Proponents of this approach argued that these cDNA sequences
would allow for the quick discovery of hundreds or thousands of novel protein-
coding genes. Their critics countered that cDNA sequencing would miss important
regulatory elements that could be found only in the genomic DNA. In the end, the
cDNA sequencing advocates appear to have won. Since the original description of
609 Expressed Sequence Tags (ESTs) in 1991 (Adams et al., 1991), the growth of
ESTs in the public databases has been dramatic. The number of ESTs in GenBank
surpassed the number of non-EST records in mid-1995; as of June 2000, the 4.6
million EST records comprised 62% of the sequences in GenBank. Although the
original ESTs were of human origin, NCBI’'s EST database (dbEST) now contains
ESTs from over 250 organisms, including mouse, rat, Caenorhabditis elegans, and
Drosophila melanogaster. In addition, several commercial establishments maintain
privately funded, in-house collections of ESTs. ESTs are now widely used throughout
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the genomics and molecular biology communities for gene discovery, mapping, poly-
morphism analysis, expression studies, and gene prediction.

WHAT IS AN EST?

An overview of an EST sequencing project is shown in Figure 12.1. In brief, a
cDNA library is constructed from a tissue or cell line of interest. Individual clones
are picked from the library, and one sequence is generated from each end of the
cDNA insert. Thus, each clone normally has a 5’ and 3’ EST associated with it. The
sequences average —400 bases in length. Because the ESTs are short, they generally
represent only fragments of genes, not complete coding sequences. Many sequencing
centers have automated the process of EST generation, producing ESTs at a rapid
rate. For example, at the time of this writing, the Genome Sequencing Center at
Washington University was producing over 20,000 ESTs per week.

The ESTs that have been submitted to the public sequence databases to date
were created from thousands of different cDNA libraries representing over 250 or-
ganisms. The libraries may be from whole organs, such as human brain, liver, lung,
or skeletal muscle, specialized tissues or cells, such as cerebral cortex or epidermal
keratinocyte, or cultured cell lines such as liver HepG2 or gastric carcinoma. Some
libraries have been constructed to compare transcripts from different developmental
stages, such as fetal versus infant human brain or embryonic 7-day versus neonatal
10-day rat heart ventricle. Others are used to highlight gene expression differences
between normal and transformed tissue, such as normal colonic epithelium and co-
lorectal carcinoma cell line. The libraries are constructed by isolating mRNA from
the tissue or cell line of interest. The mRNA is then reverse-transcribed into cDNA,
usually with an oligo(dT) primer, so that one end of the cDNA insert derives from
the polyA tail at the end of the mRNA. The other end of the cDNA is normally
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ﬂ reverse transcribe EST sequences
into cDNA dbEST
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Figure 12.1. Overview of how ESTs are constructed.
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within the coding sequence but may be in the 5’ untranslated region if the coding
sequence is short. The resulting cDNA is cloned into a vector. In many libraries, the
cDNA is cloned directionally. Some of the libraries are normalized to bring the
frequency of occurrence of clones representing individual mRNA species into a narrow
range (Bonaldo et al., 1996; Soares et al., 1994). Other libraries are constructed by a
process of subtractive hybridization, in which a pool of mRNA sequences is removed
from a library of interest, leaving behind sequences unique to that library (Bonaldo et
al., 1996). For example, to construct a library for the study of bipolar disorder, re-
searchers started with human frontal lobe cDNA from individuals with bipolar dis-
order, and subtracted out cDNA that hybridized to cDNA from mentally normal
individuals (see http://www.ncbi.nlm.nih.gov/dbEST/dbest_libs.html#lib1475).

With the use of primers that hybridize to the vector sequence, the ends of the
cDNA insert are sequenced. Automatic DNA sequencers generate most EST data. If
the cDNA has been directionally cloned into the vector, the sequences can be clas-
sified as deriving from the 5’ or 3’ end of the clone. In most cases, both the 5’ and
3’ sequences are determined, but some EST projects have concentrated only on 5’
ESTs to maximize the amount of coding sequence determined. Because the sequence
of each EST is generated only once, the sequences may (and often do) contain errors.
Contaminating vector, mitochondrial, and bacterial sequences are routinely removed
before the EST sequences are deposited into the public databases (Hillier et al.,
1996). ESTs in the databases are identified by their clone number as well as their 5’
or 3’ orientation, if known.

The I.M.A.G.E. Consortium (Lennon et al., 1996) has picked individual clones
from many of the libraries used for EST sequencing and arrayed them for easy
distribution. These clones can be obtained royalty-free from I.M.A.G.E. Consortium
distributors. As of the time of this writing, more than 3.8 million cDNA clones have
been arrayed from 360 human and 108 mouse cDNA libraries; zebrafish and Xenopus
clones have also been arrayed. LM.A.G.E. Consortium sequences currently comprise
more than half of the ESTs in GenBank. Most of the sequencing of LM.A.G.E. clones
is performed by the Genome Sequencing Center at Washington University/St. Louis.
Merck sponsored human clone sequencing in 1995 and 1996; since then, the collab-
orative EST project has been sponsored by the National Cancer Institute as part of
the Cancer Genome Anatomy Project. Sequencing by Washington University/St.
Louis of mouse cDNAs is sponsored by the Howard Hughes Medical Institute. Se-
quence trace data from the ESTs sequenced by the Washington University/St. Louis
projects are available online.

How to Access ESTs

ESTs are submitted to all three international sequence databases (GenBank, EMBL,
and DDBJ), under the data-sharing agreement described in Chapter 2. Therefore, all
ESTs can be accessed through all of these databases, regardless of where the se-
quence was originally submitted. The same ESTs are also available from the NCBI’s
dbEST, the database of Expressed Sequence Tags (Boguski et al., 1993). Instructions
about how to submit EST sequences to GenBank are available online.

Like other sequences in GenBank, ESTs can be accessed through Entrez (see
Chapter 7). Single ESTs are retrieved by accession or gi number. Advanced searches
with multiple search terms can be limited to ESTs by selecting the Properties
limit and entering EST. The two ESTs deriving from a particular LM.A.G.E. clone

285



286

EXPRESSED SEQUENCE TAGS (ESTs)

can be retrieved by searching for “IMAGE:clone_number” (e.g., “IMAGE:
743313"). The Entrez version of the EST with accession AW592465 is shown in
Figure 12.2. Various identifiers for the EST, including the accession number and
GenBank gi, are shown in the top block. The CLONE INFO section specifies the
number of the clone (2934602) and whether this EST derives from the 5’ or 3’ end
of the clone (here, 3"). The nucleotide sequence is shown next, along with a note
supplied by the submitter about where the high-quality sequence stops. The COM-
MENTS block tells how to order the clone from the I.M.A.G.E. Consortium. The
last few sections present other information supplied by the submitter, including de-
tails about the cDNA library. Although many ESTs (especially 5’ ESTs) can be
translated into a partial or sometimes full-length protein sequence, coding sequence
features are not provided. Other views of the data, including a FASTA-formatted
DNA sequence, can be selected from a pull-down at the top of the Entrez entry (not
shown).

EST sequences are also available for BLAST searching. Because ESTs are nu-
cleotide sequences, they can be retrieved only by using BLAST programs that search
nucleotide databases (BLASTN for a nucleotide sequence query, TBLASTN for a
protein sequence query, and TBLASTX for a translated nucleotide sequence query).
Because they make up such a high proportion of sequences in GenBank, ESTs are
not included in the BLAST nr database. To search against ESTs, select the dbest
database or, for a specific organism, the mouse ests, human ests, or other ests da-
tabase. Note that ESTs are also included in the month database, which contains all
new or revised sequences released in the last 30 days.

Limitations of EST Data

Although ESTs are an excellent source of sequence data, these data are not of as
high a quality as sequences determined by conventional means. Because EST se-
quences are generated in a single pass, they have a higher error rate than sequences
that are verified by multiple sequencing runs, on the order of 3% (Boguski et al.,
1993). In contrast, the standard for the human genome project is an error rate of
<0.01% (Collins et al., 1998). ESTs may contain substitutions, deletions, or insertions
compared with the parent mRNA sequence. The region of an EST between positions
100 and 300 may be the most accurate part of the sequence (Hillier et al., 1996).
Hillier et al. (1996) have performed a comprehensive analysis of potential EST
artifacts. They found that ESTs may contain bacterial, mitochondrial, or vector se-
quence contamination. Most EST cDNA libraries are oligo(dT) primed, and the 3’
EST derives from the 3’ untranslated region of the gene. However, Hillier et al.
found that 1.5% of oligo(dT)-primed 3" ESTs do not align with the known 3’ end
of the mRNA. These ESTs either represent nonspecific priming or indicate alternative
splicing. cDNA for some libraries is synthesized with random primers, so the location
of the 3" EST is unknown. Another potential problem comes from inverted clones
in directionally cloned libraries, in which the 5’ and 3’ EST are mislabeled. cDNA
inserts may be inverted because of failures in the directional cloning procedure, or
simply because of human error. Hillier et al. found that 6.25% of ESTs that match
a known mRNA align in an inverted orientation. Chimeric clones, in which the 5’
EST matches one mRNA and the 3’ EST another mRNA, may arise either during
library construction or sample handling. Hillier et al. found a chimera frequency of



WHAT IS AN EST?

IDENTIFIERS

dbEST Id:
EST name:
GenBank Acc:
GenBank gi:

CLONE INFO
Clone Id:
Source:
DNA type:

PRIMERS
Sequencing:
PolyA Tail:

SEQUENCE

Quality:

Entry Created:
Last Updated:

COMMENTS

PUTATIVE ID

LIBRARY

Lib Name:
Organism:
Organ:

Lab host:
Vector:

R. Site 1:
R. Site 2:
Description:

SUBMITTER
Name :
Tel:
E-mail:

CITATIONS
Title:

Authors:
Year:

Status:

MAP DATA

4025315
hf43a02.x1
AW592465
7279647

IMAGE:2934602
NCI
CDNA

(3")

-40UP from Gibco
Unknown

TTTTTTTTTAAATTGCCAAGTGATTTTACTTCAAGATGACATCAGAATTGCTAAAAGGTG
ATGTAACCGTCAGAGTGACTATTGATTATAACTCCCAGTAAGTGTCAACGTGATTTTCTC
CATTGTGTGGGCTTCCATTAGTATTTACTCATTAGGTTCAGTAGTTTTCATTATTTTCTC
TTCCATAAATTCTATTGCTTGTGAAAAGCCACCAAAGAGAAGTGAAACCAGAAAAAGGAT
GCAACGAGTAAATATTAAAAGTAGTGCTCAGTTTATATTCGCAAGTGTGCTGGCTGTAAT
ACGATATTGTTTGTCAGGTGGAGGGCCACTATCTATACTACCTCCTTTTCCTCAGTTCAC
ATGTTGGTGGTTGCCACCCATGCAGACAGTGACAATGTTTTTTGTTGTTACATACTCCTT
TGTAATTGCATGTGTTAAGAACACACTCAAAATGCAGGTCTTGATAAGAAGGCAATTGTG
TTTAAGACAGTAGCTGCCTGGGCCACAGGTTGCACCATCCACTGACCGCCCCATTTCTGG
CAAGTCTGGACCCTGGTGTGGCTAATAACCAAGGCATTTATT

High quality sequence stops at base: 356

Mar 22 2000
Mar 22 2000

This clone is available royalty-free through LLNL ; contact
the IMAGE Consortium (info@image.llnl.gov) for further
information.

Assigned by submitter
TR:060815 Q60815 ADAM 4 PROTEIN PRECURSOR ;

Soares_NFL_T_GBC_S1
Homo sapiens
pooled
DH10B
pT7T3D-Pac
Not T

Eco RI
Equal amounts of plasmid DNA from three normalized libraries
(fetal lung NbHL19W, testis NHT, and B-cell NCI_CGAP_GCB1)
were mixed, and ss circles were made in vitro. Following HAP
purification, this DNA was used as tracer in a subtractive
hybridization reaction. The driver was PCR-amplified cDNAs
from pools of 5,000 clones made from the same 3 libraries.
The pools consisted of I.M.A.G.E. clones 297480-302087,
682632-687239, 726408-728711, and 729096-731399. Subtraction
by Bento Soares and M. Fatima Bonaldo.

(Pharmacia) with a modified polylinker

Robert Strausberg, Ph.D.
(301) 496-1550
Robert_Strausberg@nih.gov

National Cancer Institute, Cancer Genome Anatomy Project

(CGAP), Tumor Gene Index

NCI-CGAP http://www.ncbi.nlm.nih.gov/ncicgap
1997

Unpublished

Figure 12.2. The Entrez view of an EST, accession Al273896.
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1%, but a separate study estimated the frequency at 11% (Wolfsberg and Landsman,
1997).

EST CLUSTERING

As of mid-2000, GenBank contained just under 1.9 million human EST records.
Although original estimates of the number of genes in the human genome hovered
around the 100,000 mark, predictions made based on experimental data and presented
at the 2000 Cold Spring Harbor Genome meeting have drastically reduced the esti-
mate to below 50,000. In any event, it is clear, even without doing any sequence
comparisons, that these ESTs cannot each represent a unique sequence. Even with
the process of library normalization, abundant transcripts are represented more fre-
quently in dbEST than rare ones. For example, dbEST contains more than 200 ESTs
for human alpha-fetoprotein alone. A number of efforts are geared at simplifying this
abundance of DNA sequences by grouping together records that likely derive from
the same gene. Other resources, including those for mapping and gene discovery,
can then make use of this condensed set of gene-based clusters, rather than the
expansive and relatively unorganized collection of all ESTs and other mRNA
sequences.

UniGene

The UniGene resource, developed at NCBI, clusters ESTs and other mRNA se-
quences, along with coding sequences (CDSs) annotated on genomic DNA, into
subsets of related sequences (Boguski and Schuler, 1995; Wagner, L. et al., unpub-
lished observations). In most cases, each cluster is made up of sequences produced
by a single gene, including alternatively spliced transcripts (Fig. 12.3). However,
some genes may be represented by more than one cluster. The clusters are organism
specific and are currently available for human, mouse, rat, zebrafish, and cattle. They
are built in several stages, using an automatic process based on special sequence
comparison algorithms. First, the nucleotide sequences are searched for contami-
nants, such as mitochondrial, ribosomal, and vector sequence, repetitive elements,
and low-complexity sequences. After a sequence is screened, it must contain at least
100 bases to be a candidate for entry into UniGene. mRNA and genomic DNA are
clustered first into gene links. A second sequence comparison links ESTs to each
other and to the gene links. At this stage, all clusters are “‘anchored,”” and contain
either a sequence with a polyadenylation site or two ESTs labeled as coming from
the 3’ end of a clone. Clone-based edges are added by linking the 5’ and 3’ ESTs
that derive from the same clone. In some cases, this linking may merge clusters
identified at a previous stage. Finally, unanchored ESTs and gene clusters of size 1
(which may represent rare transcripts) are compared with other UniGene clusters at
lower stringency. The UniGene build is updated weekly, and the sequences that make
up a cluster may change. Thus, it is not safe to refer to a UniGene cluster by its
cluster identifier; instead, one should use the GenBank accession numbers of the
sequences in the cluster. A summary of the UniGene build procedure is shown in
Figure 12.4a. Additional information about the UniGene build is available online.
As of July 2000, the human subset of UniGene contained 1.7 million sequences
in 82,000 clusters; 98% of these clustered sequences were ESTs, and the remaining
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Figure 12.3. Sequences in a UniGene cluster. This cluster contains a genomic DNA se-
quence with an annotated coding sequence (CDS), two alternatively-spliced mRNA se-
quences, and 10 ESTs from five clones that derive from the mRNA sequences.

2% were from mRNAs or CDSs annotated on genomic DNA. These human clusters
could represent fragments of up to —82,000 unique human genes, implying that many
human genes are now represented in a UniGene cluster. (This number is undoubtedly
an overestimate of the number of genes in the human genome, as some genes may
be represented by more than one cluster.) Only 1.4% of clusters totally lack ESTs,
implying that most human genes are represented by at least one EST. Conversely, it
appears that the majority of human genes have been identified only by ESTs; only
16% of clusters contain either an mRNA or a CDS annotated on a genomic DNA.
Because fewer ESTs are available for mouse, rat, and zebrafish, the UniGene clusters
are not as representative of the unique genes in the genome. Mouse UniGene contains
895,000 sequences in 88,000 clusters, and rat UniGene contains 170,000 sequences
in 37,000 clusters.

A new UniGene resource, HomoloGene, includes curated and calculated orthol-
ogs and homologs for genes from human, mouse, rat, and zebrafish. Calculated
orthologs and homologs are the result of nucleotide sequence comparisons between
all UniGene clusters for each pair of organisms. Homologs are identified as the best
match between a UniGene cluster in one organism and a cluster in a second organ-
ism. When two sequences in different organisms are best matches to one another (a
reciprocal best match), the UniGene clusters corresponding to the pair of sequences
are considered putative orthologs. A special symbol indicates that UniGene clusters
in three or more organisms share a mutually consistent ortholog relationship. The
calculated orthologs and homologs are considered putative, since they are based only
on sequence comparisons. Curated orthologs are provided by the Mouse Genome
Database (MGD) at the Jackson Laboratory and the Zebrafish Information Database
(ZFIN) at the University of Oregon and can also be obtained from the scientific
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(a) UniGene

GenBank mRNAs | GenBank genomic CDSs | dbEST ESTs

Cluster known genes (LocusLink and
megablast)

Add ESTs to clusters by sequence
similarity (megablast) and clone IDs

Preliminary clusters

Select 3’ anchored clusters (contain
polyadenlyation signal or tail,
- or two 3" ESTs)

Unanchored clusters

with other clusters (megablast)

Add previously unclustered ESTs

l Merge some single-member clusters
l to clusters (megablast)

(b) TIGR Gene Indices

| GenBank CDSs from mRNA and genomic | | ESTs | | TCs from previous build | | Singletons from previous build

Pairwise alignment.

Chimeric, low-quality, and
non-overlapping sequences; |4——

rare splice forms Prel ary TCs
Cluster preliminary TCs, and assembly with CAP3
Redundancy | «——

TCs

l

Assemble each cluster with CAP3

Load

| Species-specific Gene Index

Figure 12.4. Schematics for clustering of ESTs. All three methods prescreen ESTs for con-
taminating sequence. (a) UniGene. Most sequence analysis is done with MegaBLAST (Zhang
et al., 2000), a fast version of BLAST. The minimum alignment length is 70 nucleotides, and
an alignment must extend over at least 70% of the alignable region in the first two steps
or 55% of the alignable region in the last two steps. (b) TIGR Gene Indices. Sequences are
clustered if they share a minimum of 95% identity over a 40 nucleotide region, with fewer
than 20 nucleotides of mismatched sequence at either end. Sequences are assembled with
CAP3 (Huang and Madan, 1999). (c) STACK. Sequences are clustered if they share 96%
identity over 150 nucleotides. Clustering is done with d2__cluster (Burke et al., 1999) and
aligned with PHRAP (Green, 1996).
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(c) STACK

Human ESTs
/ l \ Partition by tissue

| Tissue-specific EST sets |

a O

l l Cluster with d2_cluster

l
Lo

Preliminary assemblies |

Assemble each cluster with PHRAP

l l i Alignment analysis with CRAW and CONTIGPROC
l i Add 5’ ESTs based on clone IDs

Figure 12.4. Continued

literature. Direct links to HomoloGene are provided for UniGene clusters that have
a candidate ortholog or homolog.

Queries to UniGene are entered into a text box on any of the UniGene pages.
Query terms can be, for example, the UniGene identifier, a gene name, a text term
that is found somewhere in the UniGene record, or the accession number of an EST
or gene sequence in the cluster. For example, the cluster entitled ‘A disintegrin and
metalloprotease domain 10 that contains the sequence for human ADAMI10 can be
retrieved by entering ADAM10, disintegrin, AF009615 (the GenBank acces-
sion number of ADAM10), or H69859 (the GenBank accession number of an EST
in the cluster). Enter multiple terms to get a list of entries containing all terms. To
query a specific part of the UniGene record, use the @ symbol. For example,
@gene (symbol) looks for genes with the name of the symbol enclosed in the
parentheses, @chr (num) searches for entries that map to chromosome num,
@lib (id) returns entries in a cDNA library identified by id, and @pid (id) se-
lects entries associated with a GenBank protein identifier id.

The query results page contains a list of all UniGene clusters that match the
query. Each cluster is identified by an identifier, a description, and a gene symbol,
if available. Cluster identifiers are prefixed with Hs for Homo sapiens, Rn for Rattus
norvegicus, Mm for Mus musculus, or Dn for Danio rerio. The descriptions of
UniGene clusters are taken from LocusLink, if available, or from the title of a se-
quence in the cluster. The UniGene report page fo