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PREFACE

Chemoinformatics is concerned with the application of computational methods
to tackle chemical problems, with particular emphasis on the manipulation of
chemical structural information. The term was introduced in the late 1990s and
is so new that there is not even any universal agreement on the correct spelling
(cheminformatics is probably equally popular, and chemical informatics and even
chemiinformatics have also been reported). Several attempts have been made to
define chemoinformatics; among the more widely quoted are the following:

The mixing of information resources to transform data into information, and information
into knowledge, for the intended purpose of making better decisions faster in the arena of
drug lead identification and optimisation. [Brown 1998]

Chem(o)informatics is a generic term that encompasses the design, creation, organisation,
management, retrieval, analysis, dissemination, visualisation and use of chemical
information. [Paris 2000]

Many of the techniques used in chemoinformatics are in fact rather well established,
being the result of years if not decades of research in academic, government and
industrial laboratories. Indeed, it has been suggested that chemoinformatics is
simply a new name for an old problem [Hann and Green 1999]. Whilst some of
the current interest in chemoinformatics can be ascribed to the natural enthusiasm
for things new, the main reason for its emergence can be traced to the need
to deal with the vast quantities of data being generated by new approaches to
drug discovery such as high-throughput screening and combinatorial chemistry
[Russo 2002]. Concomitant increases in computer power, particularly for desktop
machines, have provided the resources to deal with this deluge. Many other aspects
of drug discovery also make use of chemoinformatics techniques, from the design
of new synthetic routes by searching databases of known reactions through the
construction of computational models such as Quantitative Structure–Activity
Relationships that relate observed biological activity to chemical structure to the
use of molecular docking programs to predict the three-dimensional structures of
protein–ligand complexes in order to select a set of compounds for screening.

xi



xii An Introduction to Chemoinformatics

One characteristic of chemoinformatics is that the methods must generally be
applicable to large numbers of molecules; this has been one of the principles that
we have used when deciding what to include in this book. Our emphasis is on
the computer manipulation of two- and three-dimensional chemical structures.
We therefore include discussions of methods such as pharmacophore mapping
and protein–ligand docking, which are perhaps more usually considered as
“computational chemistry” rather than chemoinformatics, but which are now
applied to large databases of molecules.

We start in Chapters 1 and 2 by considering the ways in which chemical
structures can be represented in computer programs and databases. We then
describe the calculation of molecular descriptors in Chapter 3; these form the
basis for the construction of mathematical models such as Quantitative Structure–
Activity Relationships described in Chapter 4. Chapters 5 and 6 deal with
molecular similarity and similarity searching, and with methods to calculate
molecular “diversity” and for selecting diverse sets of compounds. Chapter 7
follows with a discussion of methods for the analysis of data sets obtained
from high-throughput screening. In Chapter 8 we consider approaches to virtual
screening, including high-throughput docking and the use of in silico ADMET
models. Finally, in Chapter 9 we describe methods for the design of combinatorial
libraries. It is worth noting that certain methods (e.g. genetic algorithms and
conformational analysis) are used in several areas; later sections may refer back as
appropriate.

This book has had a rather long gestation period. One of us (ARL)
had previously written a textbook on molecular modelling and computational
chemistry [Leach 2001] and felt that relevant parts of the material would form
a useful volume in their own right. Meanwhile, VJG was heavily involved in
establishing one of the first academic courses in chemoinformatics [Schofield
et al. 2001], was in need of a textbook and, in the absence of anything
suitable, was planning to write her own. This book is the result of deciding
to combine our efforts. Our target audience comprises graduate students, final-
year undergraduates and professional scientists who wish to learn more about the
subject. We have not assumed any prior knowledge other than some background
knowledge of chemistry and some basic mathematical concepts.

We have tried to ensure that adequate coverage is given to the more widely
used and available methods. However, it is not possible in a volume such as this to
provide a definitive historical account or a comprehensive review of the field. The
references and suggestions for further reading will hopefully provide good starting
points for the inquisitive reader. We would be delighted to receive any constructive
comments and feedback.



INTRODUCTION TO THE PAPERBACK EDITION

One indication of a maturing subject area is the publication of books
and reviews intended for a general audience. The publication of the first
(hardback) edition of this book together with others [Gasteiger and Engel 2003;
Bajorath 2004; Oprea 2005] suggests that chemoinformatics has now reached
this milestone. The subsequent four years have seen further advancements, both
with regard to methodological developments and the practical application of the
techniques in a number of fields. Publication of this new paperback edition has
provided us with an opportunity to revise and update the text, which we hope will
remain relevant not only to newcomers to the field but also to existing practitioners.
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Chapter 1

REPRESENTATION AND MANIPULATION OF 2D
MOLECULAR STRUCTURES

1. INTRODUCTION

Many organisations maintain databases of chemical compounds. Some of these
databases are publicly accessible; others are proprietary. They may contain a very
large number of compounds; several hundred thousand is common, and some
hold millions of entries. It is nevertheless possible to search for structures and
data in these databases and have the results returned within seconds. A recent
development involves the creation of databases containing virtual molecules.
These are compounds that do not exist yet (so far as the creator is aware) but which
could be synthesised readily, often using combinatorial chemistry techniques. The
sizes of these virtual collections can run to billions of structures.

In this chapter we introduce some of the methods used for the computational
representation of molecular structures and the creation of structural databases. The
procedures used to accomplish common tasks such as substructure searching are
considered, including the use of graph theoretic methods, bitstring screens and
the use of canonical structure representations. Finally, we give a brief overview
of reaction databases and the use of Markush representations in chemical patents.
The focus of this chapter will be on “2D representations” that are concerned with
the chemical bonding between atoms rather than their 3D structures (the subject
of Chapter 2).

2. COMPUTER REPRESENTATIONS OF CHEMICAL
STRUCTURES

Let us start by considering how we might store information about a chemical
structure within a computer. We will use aspirin as our example (see Figure 1-1).
Easy-to-use programs are available that enable chemists to draw such structures
for incorporation into reports, publications or presentations; two popular examples
are ChemDraw [ChemDraw 2002] and ISIS/Draw [ISIS/Draw 2002]. One way to
store the structure would be as an image, as might for example be obtained by

1
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OHO

O

O

Figure 1-1. The chemical structure of aspirin (acetyl salicylic acid).

scanning a printout of the structure into the computer, or in a text format such
as Portable Document Format (pdf) [pdf]. However, an image file has little real
value in chemoinformatics and computational chemistry. Whilst it does enable the
structure to be reproduced, a more appropriate representation is required if the
molecule is to be stored in a database for subsequent retrieval and search based on
its chemical structure.

2.1 Graph Theoretic Representations
of Chemical Structures

Chemical structures are usually stored in a computer as molecular graphs.
Graph theory is a well-established area of mathematics that has found application
not just in chemistry but in many other areas, such as computer science. A graph
is an abstract structure that contains nodes connected by edges. Some examples
of graphs that correspond to chemical structures are shown in Figure 1-2. In a
molecular graph the nodes correspond to the atoms and the edges to the bonds.
Note that hydrogen atoms are often omitted. The nodes and edges may have
properties associated with them. For example, the atomic number or atom type
may be associated with each node and the bond order with each edge. These atom
and bond properties are important when performing operations with or upon the
molecular graph. A graph represents the topology of a molecule only, that is, the
way the nodes (or atoms) are connected. Thus a given graph may be drawn in
many different ways and may not obviously correspond to a “standard” chemical
diagram (e.g. the graph representation of aspirin in Figure 1-2). A subgraph is a
subset of the nodes and edges of a graph; thus the graph for benzene is a subgraph
of the graph for aspirin. A tree is a special type of graph in which there is just a
single path connecting each pair of vertices, that is, there are no cycles or rings
within the graph. The root node of a tree is the starting point; the other vertices are
either branch nodes or leaf nodes. Acyclic molecules are represented using trees.
In a completely connected graph there is an edge between all pairs of nodes. Such
graphs are rather rare in chemistry, one example being the P4 form of elemental
phosphorus, but they can be useful when manipulating 3D structures as will be
seen in Chapter 2.
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root node

branch 
nodes

leaf nodes

Figure 1-2. A graph consists of nodes connected by edges. The graph on the bottom left is an
example of a tree and that at the bottom right is a completely connected graph. Clockwise, from
top left, these graphs represent aspirin, cyclobutane, the P4 form of phosphorus and 2,3,4,6-
tetramethyloctane with C5 as the root node. In the aspirin graph the solid nodes represent oxygen
atoms.

As graphs can be constructed in many different ways it is necessary to have
methods to determine whether two graphs are the same. In graph theoretic terms
this problem is known as graph isomorphism. There are well-developed algorithms
from computer science that can be used to establish whether two molecular graphs
are isomorphic [Read and Corneil 1977; Trinajstic 1983]. A trivial requirement is
that they must have the same number of nodes and edges; it is then necessary to
establish a mapping from one graph to the other such that every node and edge in
one graph has an equivalent counterpart in the other graph.

2.2 Connection Tables and Linear Notations

It is necessary to have a means to communicate the molecular graph to and
from the computer. This can be achieved in a variety of ways. A common method
is to use a connection table. The simplest type of connection table consists of
two sections: first, a list of the atomic numbers of the atoms in the molecule and
second a list of the bonds, specified as pairs of bonded atoms. More detailed forms
of connection table include additional information such as the hybridisation state
of each atom and the bond order. One key point to note is that hydrogen atoms
may not necessarily be explicitly included in the connection table (i.e. they may be
implied) in which case the connection table is hydrogen-suppressed. Information
about the (xy) or (xyz) coordinates of the atoms may also be present to enable
a standard chemical drawing to be produced or for use in a molecular graphics
program. By way of example, the connection table for aspirin in the connection
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-ISIS- 09270222202D

13 13 0 0 0 0 0 0 0 0999 V2000
-3.4639 -1.5375 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-3.4651 -2.3648 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-2.7503 -2.7777 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-2.0338 -2.3644 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-2.0367 -1.5338 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-2.7521 -1.1247 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-2.7545 -0.2997 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-2.0413 0.1149 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
-3.4702 0.1107 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
-1.3238 -1.1186 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
-0.6125 -1.5292 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-0.6167 -2.3542 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
0.1000 -1.1125 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

1 2 2 0 0 0 0
6 7 1 0 0 0 0
3 4 2 0 0 0 0
7 8 1 0 0 0 0
7 9 2 0 0 0 0
4 5 1 0 0 0 0
5 10 1 0 0 0 0
2 3 1 0 0 0 0
10 11 1 0 0 0 0
5 6 2 0 0 0 0
11 12 2 0 0 0 0
6 1 1 0 0 0 0
11 13 1 0 0 0 0

M END

1

2

3

4

5
6

7

OH
8

O
9

O
10

11

O 12

13

the first atom is a carbon

the first bond is 
between atoms 1 
and 2 and has 
order 2

number 
of atoms

number 
of bonds

the first three numbers are the
x, y and z coordinates of the
atom

Figure 1-3. The connection table for aspirin in the MDL format (hydrogen-suppressed form).
The numbering of the atoms is as shown in the chemical diagram.

table format developed by MDL Information Systems [Dalby et al. 1992] is shown
in Figure 1-3. This particular format can encode a variety of information including
stereochemistry, charge and isotope data.

An alternative way to represent and communicate a molecular graph is through
the use of a linear notation. A linear notation uses alphanumeric characters
to encode the molecular structure. Linear notations are more compact than
connection tables and so they can be particularly useful for storing and transmitting
large numbers of molecules. An early line notation that became quite widely used
was the Wiswesser Line Notation (WLN) [Wiswesser 1954]. This uses a complex
set of rules to represent different functional groups and the way they are connected
in the molecule. A recent linear notation that has found widespread acceptance
is the Simplified Molecular Input Line Entry Specification (SMILES) notation
[Weininger 1988]. One reason for the extensive use of SMILES is that it is much
easier to use and comprehend than the WLN; just a few rules are needed to write
and understand most SMILES strings.
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In SMILES, atoms are represented by their atomic symbol. Upper case
symbols are used for aliphatic atoms and lower case for aromatic atoms.
Hydrogen atoms are not normally explicitly represented as SMILES is a hydrogen-
suppressed notation (see below for some of the exceptions). Double bonds are
written using “=” and triple bonds using “#”; single and aromatic bonds are not
explicitly represented by any symbol (except in special cases such as the non-
aromatic single bond in biphenyl, which is written using “−”). To construct a
SMILES string one needs to “walk” through the chemical structure in such a way
that all the atoms are visited just once. Rings are dealt with by “breaking” one of
the bonds in each ring; the presence of the ring is then indicated by appending
an integer to the two atoms of the broken bond. As one progresses through the
molecule one will usually arrive at branch points, where more than one possible
avenue could be followed. The presence of a branch point is indicated using a left-
hand bracket; a right-hand bracket indicates that all the atoms in that branch have
been visited. Branches can be nested to any level necessary.

The simplest SMILES is probably that for methane: C. Note that all four
attached hydrogens are implied. Ethane is CC, propane is CCC and 2-methyl
propane is CC(C)C (note the branch point). Cyclohexane illustrates the use of ring
closure integers; the SMILES is C1CCCCC1. Benzene is c1ccccc1 (note the use
of lower case to indicate aromatic atoms). Acetic acid is CC(=O)O. The SMILES
for a selection of more complex molecules are provided in Figure 1-4.

N
H

HO

NH2

NH2

serotonin: 
NCCc1c[nH]c2ccc(O)cc12

cubane: 
C1(C2C3C14)C5C2C3C45

COOH

COOH

succinicacid: 
OC(=O)CCC(=O)O

trimethoprim: COc1cc(Cc2cnc(N)nc2N)cc(OC)c1OC

N

N

O

O

O

H2N

O

O

progesterone:
CC(=O)C1CCC2C3CCC4=CC(=O)CCC4(C)C3CCC12C

Figure 1-4. Some examples of the SMILES strings for a variety of molecules.
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Information about chirality and geometrical isomerism can also be included in
the SMILES notation. The absolute stereochemistry at chiral atoms is indicated
using the “@” symbol; by way of example, the two stereoisomers of alanine are
written N[C@H](C)C(=O)O and N[C@@H](C)C(=O)O. Note that in this case
the hydrogen atom on the chiral carbon is included as part of the specification of
the chiral centre. Geometrical (E/Z or cis–trans) isomerism about double bonds is
indicated using slashes; again by way of example trans-butene is C/C=C/C and
cis-butene is C/C=C\C. Further information about these and other extensions to
the basic SMILES notation can be found elsewhere [James et al. 2002].

2.3 Canonical Representations of Molecular Structures

There may be many different ways to construct the connection table or the
SMILES string for a given molecule. In a connection table one may choose
different ways to number the atoms and in SMILES notation the SMILES
string may be written starting at a different atom or by following a different
sequence through the molecule. For example, many possible SMILES strings
can be written for aspirin, two of which are OC(=O)c1ccccc1OC(=O)C and
c1cccc(OC(=O)C)c1C(=O)O). Chemical database systems need to be able to
establish whether two connection tables or two SMILES strings represent the
same chemical structure or not (as might arise should there be an attempt to
enter the same compound twice). This problem could in principle be tackled by
renumbering one of the connection tables in all possible ways and testing for
identity. However this is computationally unfeasible since there are N ! different
ways of numbering a connection table consisting of N atoms. Hence, in order to
deal with this situation it is usual to generate a canonical representation of the
chemical structure. A canonical representation is a unique ordering of the atoms
for a given molecular graph. It is somewhat analogous to the International Union
of Pure and Applied Chemistry (IUPAC) name for a chemical structure.

A well-known and widely used method for determining a canonical order of
the atoms is the Morgan algorithm [Morgan 1965] and its descendants such as
the SEMA method, which extends it to incorporate stereochemistry information
[Wipke et al. 1974]. A key part of the Morgan algorithm is the iterative calculation
of “connectivity values” to enable differentiation of the atoms. This is illustrated
in Figure 1-5. Initially, each atom is assigned a connectivity value equal to the
number of connected atoms. In the second and subsequent iterations a new
connectivity value is calculated as the sum of the connectivity values of the
neighbours. The procedure continues until the number of different connectivity
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Figure 1-5. Illustration of the way in which the Morgan algorithm iteratively constructs the
atomic connectivity values.

values reaches a maximum. Thus, in the case of aspirin there are initially three
different connectivity values (1, 2, 3). This increases in the subsequent iterations
to six, eight and finally eleven. The atom with the highest connectivity value is
then chosen as the first atom in the connection table; its neighbours are then listed
(in order of their connectivity values), then their neighbours and so on. If a “tie”
occurs then additional properties are considered such as atomic number and bond
order. For example, the two oxygens of the carboxylic acid in aspirin have the
same connectivity value, as do the terminal methyl and the carbonyl oxygen of the
acetyl group. These conflicts can be resolved by consideration of the bond order
and atomic number respectively.

An algorithm called CANGEN has been developed to generate a unique
SMILES string for each molecule [Weininger et al. 1989] (the canonical SMILES
for aspirin is CC(=O)Oc1ccccc1C(=O)O). This uses somewhat similar principles
to the Morgan algorithm to produce a canonical ordering of the atoms in the graph.
This canonical ordering is then used to generate the unique SMILES string for the
molecule.

Many other formats have been devised for representing molecular graphs.
Two recent examples that are designed to have general utility are the canonical
InChI representation (formerly IChI) being developed by IUPAC [InChI; Stein
et al. 2003] and the Chemical Markup Language (CML) that is designed for the
exchange of information over the Internet [Murray-Rust and Rzepa 1999].
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3. STRUCTURE SEARCHING

The databases used to store and search chemical structural information have
tended to be rather specialised, owing to the nature of the methods used to store
and manipulate the chemical structure information. Indeed, many of the chemistry
database facilities now available in commercial products originated in academic
research projects.

Perhaps the simplest searching task involves the extraction from the database
of information associated with a particular structure. For example, one may wish
to look up the boiling point of acetic acid or the price of acetone. The first step is
to convert the structure provided by the user (the query) into the relevant canonical
ordering or representation. One could then search through the database, starting at
the beginning, in order to find this structure. However, the canonical representation
can also provide the means to retrieve information about a given structure more
directly from the database through the generation of a hash key. A hash key is
typically an integer with a value between 0 and some large number (e.g. 232 − 1).
If the database is arranged so that the hash key corresponds to the physical location
on the computer disk where the data associated with that structure is stored,
then the information can be retrieved almost instantaneously by moving the disk
read mechanism directly to that location. There are well-established computer
algorithms for the generation of hash keys [Wipke et al. 1978]. Much attention
in particular has been paid to the generation of hash keys for strings of characters
(such as canonical SMILES strings). An example of a hash key devised specifically
for chemical information is the Augmented Connectivity Molecular Formula used
in the Chemical Abstracts Service (CAS) Registry System [Freeland et al. 1979]
which uses a procedure similar in concept to the Morgan algorithm. Ideally, each
canonical structure will produce a different hash key. However, there is always
a chance that two different structures will produce the same hash key. It is thus
necessary to incorporate mechanisms that can automatically resolve such clashes.

4. SUBSTRUCTURE SEARCHING

Beyond looking up the data associated with a particular structure, substructure
searching is perhaps the most widely used approach to identify compounds of
interest. A substructure search identifies all the molecules in the database that
contain a specified substructure. A simple example would be to identify all
structures that contain a particular functional group or sequence of atoms such
as a carboxylic acid, benzene ring or C5 alkyl chain. An illustration of the range
of hits that may be obtained following a substructure search based on a dopamine
derivative is shown in Figure 1-6.
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Figure 1-6. An illustration of the range of hits that can be obtained using a substructure search.
In this case the dopamine-derived query at the top left was used to search the World Drug Index
(WDI) [WDI]. Note that in the case of fenoldopam the query can match the molecule in more
than one way.

Graph theoretic methods can be used to perform substructure searching, which
is equivalent to determining whether one graph is entirely contained within
another, a problem known as subgraph isomorphism. Efficient algorithms for
performing subgraph isomorphism are well established, but for large chemical
databases they are usually too slow to be used alone. For this reason most chemical
database systems use a two-stage mechanism to perform substructure search
[Barnard 1993]. The first step involves the use of screens to rapidly eliminate
molecules that cannot possibly match the substructure query. The aim is to discard
a large proportion (ideally more than 99%) of the database. The structures that
remain are then subjected to the more time-consuming subgraph isomorphism
procedure to determine which of them truly do match the substructure. Molecule
screens are often implemented using binary string representations of the molecules
and the query substructure called bitstrings. Bitstrings consist of a sequence of
“0”s and “1s”. They are the “natural currency” of computers and so can be
compared and manipulated very rapidly, especially if held in the computer’s
memory. A “1” in a bitstring usually indicates the presence of a particular
structural feature and a “0” its absence. Thus if a feature is present in the
substructure (i.e. there is a “1” in its bitstring) but not in the molecule (i.e. the
corresponding value is “0”) then it can be readily determined from the bitstring
comparison that the molecule cannot contain the substructure. The converse does
not hold; there will usually be features present in the molecule that are not in the
substructure. An example of the use of bitstrings for substructure search is shown
in Figure 1-7.
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110 1 1

01 11 0

Query

A

B

Figure 1-7. The bitstring representation of a query substructure is illustrated together with the
corresponding bitstrings of two database molecules. Molecule A passes the screening stage since
all the bits set to “1” in the query are also set in its bitstring. Molecule B, however, does not pass
the screening stage since the bit representing the presence of O is set to “0” in its bitstring.

4.1 Screening Methods

Most binary screening methods use one of two approaches. In a structural
key, each position in the bitstring corresponds to the presence or absence of
a predefined substructure or molecular feature. This is often specified using a
fragment dictionary; the i th substructure in the dictionary corresponds to the
i th bit in the bitstring. When a new molecule is added to the database each of
the fragments in the dictionary is checked against it. If the fragment is present
then the relevant bit is set to “1” (the bitstring initially has all positions set to
“0”). In addition to the presence or absence of substructures such as functional
groups and rings, a structural key may contain information about particular
elements and about the number of a particular type of feature (e.g. a particular
bit may correspond to “at least two methyl groups”). The aim when constructing a
fragment dictionary is to define a structural key that gives optimal performance
in a typical search, by eliminating a large proportion of the database prior to
the subgraph isomorphism stage. It is thus necessary to design the dictionary
according to the molecules expected to be stored in the database and also to
consider typical queries that might be submitted. For example, the keys used
for a database of typical organic molecules will probably be inappropriate for a
database of solid-state materials or a database consisting entirely of hydrocarbons.
There has been much work to determine the most effective set of substructures to
use in the keys [Adamson et al. 1973; Hodes 1976], and automated methods for
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screen selection have been developed that are based on the statistical occurrence
of substructures in the database [e.g. Willett 1979]. Typically the aim is to select
fragments that are independent of each other and that are equifrequent since
fragments that are very frequent and occur in most molecules are unlikely to be
discriminating and conversely fragments that occur infrequently are unlikely to
be useful. Thus, frequently occurring fragments are discarded and infrequently
occurring fragments are generalised or grouped to increase their frequency.

In principle any fragment is possible, but certain types are frequently
encountered. For example, versions of the CAS Registry System use twelve
different types of screens [Dittmar et al. 1983]. These include: augmented
atoms (consisting of a central atom together with its neighbouring atoms and
bonds); atom sequences (linear sequences of connected atoms with or without
the bond types differentiated); bond sequences (atom sequences with the bonds
differentiated but not the atoms); and screens associated with ring systems such
as the number of rings in a molecule and the ring type (which indicates the
sequence of connectivities around a ring). These are illustrated in Figure 1-8. Of
those systems which use structural key and a fragment dictionary the MACCS
and ISIS systems from MDL Information Systems Inc. [MDL] and the BCI
fingerprints from Barnard Chemical Information Ltd. [BCI] are widely used in
chemoinformatics.

The alternative to structural keys is to use a hashed fingerprint, which does not
require a predefined fragment dictionary, and so in principle has the advantage of
being applicable to any type of molecular structure. It is produced by generating all

Augmented atoms 
C ad O cs C cs C

Atom sequences
O a C a C c C

O

O
Bond sequences 

* as * cs * cs * cs *

Type of ring 
DDDTT

Key
as: acyclic single bond
cs: cyclic single bond
a: acyclic bond
c: cyclic bond
ad: acyclic double bond
D: non-fused ring atom
T: fused or bridge dring atom
*: any atom

Figure 1-8. Examples of the types of substructural fragments included in screening systems (in
bold).
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possible linear paths of connected atoms through the molecule containing between
one and a defined number of atoms (typically seven). For example, when using
the SMILES representation for aspirin the paths of length zero are just the atoms
c, C and O; the paths of length one are cc, cC, C=O, CO and cO, and so on.
Each of these paths in turn serves as the input to a second program that uses a
hashing procedure to set a small number of bits (typically four or five) to “1” in
the fingerprint bitstring. A feature of the hashing method is that each bit in the
fingerprint can be set by more than one pattern (resulting in a collision) though
it is much less likely (though in principle still possible) that all of the bits set
by one pattern will also be set by a different pattern. The presence of collisions
in hashed fingerprints does not result in false negatives (wherein structures that
match the query would be missed) but they can result in more molecules having to
be considered for the slower subgraph isomorphism stage. Hashed fingerprints
are particularly associated with Daylight Chemical Information Systems Inc.
[Daylight] where typical organic molecules set between 50 and 400 bits (out of
a total length of 1,024). Some systems use a combination of structural keys and
hashed fingerprints (e.g. the UNITY system [UNITY]).

4.2 Algorithms for Subgraph Isomorphism

Having eliminated molecules using the bitstring screen the subgraph
isomorphism search is then performed on the molecules that remain to determine
which actually match the substructure. The subgraph isomorphism search is
inherently slower; indeed it belongs to a class of problems known as NP-complete,
meaning that to find a solution all algorithms require an amount of time that varies
exponentially with the size of the problem (which for subgraph isomorphism
corresponds to the number of nodes in the graphs). The “brute-force” approach
to subgraph isomorphism involves testing every possible way to map the nodes
of the substructure graph onto those of the database molecule and then checking
whether the corresponding bonds also match. Unfortunately, if there are NS nodes
in the substructure query and NM nodes in the database molecule then there are
NM !/(NM − NS)! possible mappings that must be tested. It is clear that even for
very small substructures and molecules with modest numbers of atoms this is an
impractical approach.

Fortunately, more efficient methods are available [Barnard 1993]. Many of
these approaches make use of heuristics (i.e. rules) that aim to improve the chances
of finding a match early on or that efficiently reject candidates which cannot
give rise to a match. One of the earliest practical methods uses a backtracking
mechanism [Ray and Kirsch 1957]. In its simplest form this method first maps
a node from the substructure graph onto a matching node in the molecule graph
(such that, for example, the two matching nodes have the same atom type). The
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algorithm next attempts to map neighbouring nodes of the substructure node
onto the corresponding neighbouring nodes in the molecule graph. This process
continues until all the nodes have been successfully matched or until it proves
impossible to find a match, at which point the algorithm returns (or backtracks) to
the last successful match and attempts an alternative mapping. This backtracking
procedure continues until either a match of all nodes can be found or until all
possible mappings of the initial node have been attempted, at which point the
algorithm terminates because the substructure cannot be present in the molecule.
To improve the efficiency of this algorithm further it is possible to take into account
additional characteristics of the graph nodes such as information about a node’s
neighbours. This may enable unproductive mappings to be rejected even earlier in
the process.

The Ullmann algorithm [Ullmann 1976] is a widely used method for subgraph
isomorphism that has been shown to be one of the most efficient algorithms for
chemical structures [Downs et al. 1988a; Brint and Willett 1987]. It uses adjacency
matrices to represent the molecular graphs of the query substructure and the
molecule. In an adjacency matrix the rows and columns correspond to the atoms in
the structure such that if atoms i and j are bonded then the elements (i , j) and ( j ,i)
of the matrix have the value “1”. If they are not bonded then the value is assigned
“0”. It is thus an alternative formulation of the information in a connection table.
The adjacency matrix for aspirin is shown in Figure 1-9.

The Ullmann algorithm operates as follows. Suppose there are NS atoms in
the substructure query and NM atoms in the database molecule and that S is
the adjacency matrix of the substructure and M is the adjacency matrix of the
molecule. A matching matrix A is constructed with dimensions NS rows by NM

0010000000000

0010000000000

1101000000000

0010000010000

0000001000000

0000001000000

0000110100000

0000001010001

0001000101000

0000000010100

0000000001010

0000000000101

0000000100010

1

2

3

4

5
6

7

OH
8

O
9

O
10

11

O 12

13

Figure 1-9. The adjacency matrix for aspirin, using the atom numbering shown.
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columns so that the rows represent the atoms of the substructure and the columns
represent the atoms of the database molecule. The elements of the matching matrix
take the value “1” if a match is possible between the corresponding pair of atoms
and “0” otherwise. The aim is to find matching matrices in which each row
contains just one element equal to “1” and each column contains no more than
one element equal to “1”. In this case a unique mapping has been found for every
atom of the substructure and for those elements Ai j that have a value “1”, atom i in
the substructure matches atom j in the molecule. More concisely, each matching
matrix must satisfy A(AM)T = S (the superscriptT indicates the transposed matrix
in which the rows and columns of the matrix have been interchanged; a summary
of matrix operations and properties can be found in Appendix 1). By way of
illustration, Figure 1-10 shows such a situation with one of the possible matches
of the substructure onto the molecule and the corresponding matrices.

One way to implement the Ullmann algorithm would be to generate
systematically all possible matrices A, testing them to determine whether they

3

2
4

5
1

5

4

6

3
2

17

01000

10010

00010

01101

00010

0001000

0010000

0101000

1010100

0001010

0000101

0000010

S

M

0000010

0000100

0010000

0001000

1000000

3

2
4

5
1

5

4

6

3
2

17

A

Figure 1-10. Simple illustration of the operation of the Ullmann algorithm using a 5-atom
substructure and a 7-atom “molecule” represented by their adjacency matrices. One of the
proposed matches is shown in the bottom figure together with the corresponding matching
matrix.
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correspond to a viable match. However, this would be a rather time-consuming and
inefficient procedure and so more effective methods have been devised. Ullmann
himself suggested that neighbouring atoms could be taken into account when
considering possible matches (i.e. an atom in the query is not permitted to match
an atom in the molecule unless each of their neighbouring atoms also match).
This step in which an initial match is improved by using local information is
referred to as a refinement or relaxation step. Atom matches are initially assigned
in the matching matrix based on atom type and connectivity. A depth-first search
is then carried out incorporating the refinement step suggested above. Thus, the
first substructure atom is initially assigned to the first molecule atom that it
might match, the appropriate column in the matching matrix is set to “1” and
all remaining columns in that row are set to “0”. The refinement step is then
applied; if it fails then the algorithm backtracks and the next potential match is
tested. If it succeeds then the next row of the substructure is operated on. The
process is repeated recursively until either a complete match for the substructure
is discovered or until all options have been attempted. The refinement step and
related techniques enable current implementations of the Ullmann algorithm to
provide very efficient performance even with today’s large databases.

Different approaches to the substructure search problem have been adopted
by some systems that involve preprocessing the entire database into a format that
then enables the searches to be performed extremely rapidly. For example, in the
approach described by Christie et al. [1993] the screening stage of substructure
search is implemented using inverted files. A set of bitstrings is constructed, one
for each fragment included in a structural key. These bitstrings are of length equal
to the number of molecules in the database, with the i th bit being set if the i th
molecule contains the fragment. For molecule i to be a potential match the i th bit
must be set to “1” in the bitstrings of all the fragments in the substructure. This
can be determined by combining the relevant bitstrings using the logical AND
operator. The i th position in A AND B is set to “1” only if this bit is set in both of
the bitstrings A and B; otherwise it is set to “0”. These inverted bitstrings provided
a more rapid way to identify potential matches than traditional bitstrings. More
complex systems have also been invented that involve encoding the atoms in each
molecule in a way that reflects their environments (e.g. the type of the atom and
its bonds, the number of neighbours, whether it is in a ring or in an acyclic chain).
As this encoding is extended to the second and third neighbours of each atom,
so the fragments become more and more discriminating. In the Hierarchical Tree
Substructure Search (HTSS) system [Nagy et al. 1988] the entire database is stored
in a tree-like structure based on these encoded atoms. A substructure search on the
entire database is then reduced to a set of simple tree searches. Other database
systems use a similar approach, including the S4 system [Hicks and Jochum 1990]
developed by the Beilstein Institute and its collaborators. One potential drawback
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of some of these systems is that it can be difficult to update the database with new
structures. This may not be a problem for databases that are released on a periodic
basis, but can be difficult for systems that need to be continually updated.

4.3 Practical Aspects of Structure Searching

Modern substructure search methods enable very complex queries to be
constructed. For example, one may wish to specify that an atom is one of a
group (e.g. “can match any halogen”) and/or that an atom should not be a specific
atom (e.g. “oxygen or carbon but not nitrogen”). It may be desired to specify that
certain atoms or bonds must be part of a ring (or must not), that atoms must have
hydrogens attached (or not), and so on. The need to formulate such queries arises
from the complex nature of chemistry and the ways in which molecules interact
with each other and their environment. The MDL connection table provides special
fields to specify substructure-related information [Dalby et al. 1992] and SMARTS
[James et al. 2002] is an extension of the SMILES language for substructure
specification.

The analysis and manipulation of chemical structures often involves the
determination of features such as bond orders, rings and aromaticity. This
information may be used to generate structural keys or hashed fingerprints, and
may also be used to make the subgraph isomorphism step more efficient (e.g. if the
substructure contains a ring then these atoms must match an equivalent ring in the
molecule). In some cases these features are explicit in the representation provided
by the user; in other cases they have to be inferred from the information provided.
Ring systems in particular play a key role in chemistry and so efficient methods for
the perception of rings present in a molecular graph have attracted much attention
over many years. When bridged and fused ring systems are present then there may
be a number of different ways in which the rings can be classified. Many methods
have been proposed for finding the ring systems in molecular graphs [Downs et al.
1989]. One approach is to identify all of the rings. Thus for example in decalin
one would identify the two 6-membered rings together with the encompassing
10-membered ring. A common alternative is to identify the so-called Smallest
Set of Smallest Rings (SSSR). This is a set of rings from which all others
in the molecular graph can be constructed. Moreover, it comprises those rings
containing the fewest atoms. Thus, for example, in decalin the SSSR contains two
6-membered rings. The SSSRs for some ring systems are shown in Figure 1-11.
Having identified the rings present it is then possible to identify those that are
potentially aromatic; this is usually done on the basis of the Hückel 4n + 2 rule.
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Figure 1-11. Some ring systems and the SSSRs that they contain.
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Figure 1-12. Alternative ways to represent the aromatic ring in aspirin.

Several practical issues must be considered when working with chemical
structure representations and databases [Barnard 1988]. One of these concerns the
representation of aromatic systems. For example, three different, but equivalent
representations of aspirin are shown in Figure 1-12. Each of these would be
considered perfectly valid by a chemist. Moreover, he or she would expect any
computer system to be able to automatically recognise the equivalence of these
three representations.

In addition to aromatic systems certain other functional groups may be
represented in more than one way. Common examples include azides and diazo
compounds (Figure 1-13). Another feature to be considered is tautomerism. In
many cases the dominant tautomer can be easily identified and would be the
representation present in the database (e.g. acetone only contains approximately
0.0001% of the enol form). However, in other systems there may be more than
one viable tautomer, classic examples being pyridones, resorcinol and imidazoles
(Figure 1-13).

In addition to the organic compounds that have been the main focus of our
discussion it may also be important to be able to represent inorganic molecules,
coordination complexes, macromolecules (such as proteins or DNA) and
polymers. Each of these presents challenges, such as the complex stereochemistry
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Figure 1-13. Alternative representations for azides and diazo compounds (top). Alternative
tautomeric forms for pyridones, resorcinol and imidazole (bottom).

of some coordination complexes, the non-integral composition of some inorganic
compounds and the sheer number of atoms in macromolecules or polymers.
Few systems are designed to cope with all possibilities; these factors should
therefore be taken into account when selecting a system together with any practical
considerations such as database performance.

5. REACTION DATABASES

Reactions are central to the subject of chemistry, being the means by which
new chemical entities are produced. As any student of chemistry is aware a
huge number of new reactions and new applications of existing reactions are
published every year. It is clearly important to be able to take published reaction
information into account when planning a new chemical synthesis. This is
particularly important as a chemist may spend months refining and optimising
a particular synthetic procedure; once this is done then other scientists need to be
able to benefit from this knowledge. Traditionally, of course, this was achieved
via the printed chemical literature. Summaries of the primary literature such as
The Beilstein Handbuch der Organischen Chemie (first published in 1881 and
containing information from 1771 onwards [Luckenbach 1981]) have proved to
be invaluable aids for chemists wishing to plan their own syntheses. The potential
of computational methods for storing, searching and retrieving information about
chemical reactions has long been recognised [Lynch and Willett 1978]. This has
resulted in both commercial and in-house reaction database systems that enable
valuable information to be captured for subsequent dissemination and reuse.

When planning a synthesis a chemist may wish to search a reaction database in
a variety of ways. A simple type of query would involve an exact structure search
against the products, to determine whether there was an established synthesis
for the compound of interest. In the case of a novel compound there may be
related structures with precedented synthetic routes. In other cases the chemist
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may be more concerned with functional group transformations. For example, one
may wish to identify potential routes to aminothiazoles. Sometimes it will be
desired to perform a reaction search involving the structures or substructures of the
precursor or reactant and the product. A more general type of search would involve
identification of all deposited syntheses for a particular named reaction, in order
to identify a range of possible reaction conditions to attempt. Other quantities of
interest may include specific reagents, catalysts, solvents, the reaction conditions
(temperature, pressure, pH, time, etc.) together with the yield. One may of course
wish to combine more than one of these criteria in a single query (e.g. “find all
deposited reaction schemes which involve the reduction of an aliphatic aldehyde
to an alcohol where the temperature is less than 150◦C and the yield is greater
than 75%”).

As might be expected from our discussion above, the design of reaction
database systems is a very complex task if all of the above criteria are to be
satisfied. The earliest reaction database systems were purely text-based, enabling
queries for information such as authors, compound name and compound formula
via the use of keywords. Subsequent developments provided the ability to
incorporate structural information into the search query. Some current systems
provide the ability to perform exact and substructure searches against reaction
products, thereby retrieving all reactions which contain the key fragment in a
product molecule. Other systems provide reaction searching, in which one can
define structural features of both reactant(s) and product(s), in order to retrieve
reactions that involve the specific transformation. A key component of such
reaction searching is the use of a procedure known as atom mapping [Lynch and
Willett 1978; Chen et al. 2002]. This enables the 1:1 correspondences between
atoms in the reactants and products to be defined. An example is shown in Figure
1-14. The atom mapping of a reaction may also provide information about the
underlying mechanism, including changes in stereochemistry. When used as part
of a reaction query it enables the system to retrieve just those reactions in which the
specified substructure in the reactant(s) is converted to the specified substructure
in the product(s) and no others.
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Figure 1-14. An example of atom mapping, in this case for the formation of aminothiazoles from
thioureas and α-haloketones.
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Given the volume of published material, it is a significant task to maintain those
databases which survey all or a significant proportion of the chemical literature.
For example, the Beilstein database contains more than 9 million reactions
[Meehan and Schofield 2001; Crossfire] and the CASREACT database more than
6 million reactions [Blake and Dana 1990; CASREACT]. Other databases do not
aim to include all of the primary literature, but rather to include a representative
set of examples of each reaction to provide a chemist with sufficient material to
tackle their particular problem. There have been some published comparisons
of the different reaction database systems [Borkent et al. 1988; Zass 1990;
Parkar and Parkin 1999; Hendrickson and Zhang 2000]. In addition to the major
efforts expended implementing and populating reaction databases a number of
research groups continue to investigate novel computational algorithms both for
the representation of chemical reactions and as aids to assist in the design of
chemical syntheses.

6. THE REPRESENTATION OF PATENTS
AND PATENT DATABASES

The patent system confers a period of exclusivity and protection for a novel,
useful and non-obvious invention in exchange for its disclosure in the form
of a patent specification. Patents are of great importance in the chemical and
pharmaceutical industries with many companies competing in the same field,
frequently on the same or a similar series of molecules. It is therefore of crucial
importance to be able to determine whether a particular molecule or series of
molecules is covered by one’s own or someone else’s patent. Unfortunately this
cannot be achieved by simply looking up the structures in a database. This
is because the scopes of chemical disclosures in patents are most frequently
expressed using generic, or Markush, structures in which variables are used to
encode more than one structure into a single representation. These representations
can refer to an extremely large number of molecules. Many of the individual
molecules may not actually have been synthesised or tested but are included to
ensure that the coverage of the patent is sufficiently broad to embrace the full
scope of the invention.

The four main types of variation seen in Markush structures [Lynch and
Holliday 1996], as shown in Figure 1-15, are:

1. Substituent variation refers to different substituents at a fixed position, for
example “R1 is methyl or ethyl”.

2. Position variation refers to different attachment positions as shown by R2
in Figure 1-15.
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R1 is methyl or ethyl

R2 is amino

R3 is alkyl or an oxygen-
containing heterocycle

m is 1-3

Figure 1-15. The types of variation seen in Markush structures (see text).

3. Frequency variation refers to different occurrences of a substructure, for
example “(CH2)m where m is from 1 to 3”.

4. Homology variation refers to terms that represent chemical families, for
example “R3 is alkyl or an oxygen-containing heterocycle”.

In some cases, it may be difficult, or even impossible, to explicitly enumerate
all possible chemical structures that fall within the generic scope of a patent
disclosure. Despite these challenges, as we have indicated, it is clearly very
important to be able to determine whether a given structure or series of structures
is covered by a patent. Hence special methods have been developed for the storage,
search and manipulation of generic structures.

The commercially available systems MARPAT [Ebe et al. 1991] and Markush
DARC [Benichou et al. 1997] are based on techniques originally developed
at Sheffield University [Lynch and Holliday 1996]. These techniques include
the definition of a formal and unambiguous language called GENSAL that is
used to describe structures for computer input; the Extended Connection Table
Representation (ECTR) for the internal representation of generic structures; and
a series of search algorithms for accessing structures stored within a database.
The ECTR consists of a series of partial structures that represent the individual
substituents together with the logical framework that indicates how the partial
structures are connected together. The search system consists of three stages.
First, a fragment-screening step which is similar to that used for the substructure
search of specific structures [Holliday et al. 1992]. However, in this case
two sets of fragments are generated: those that are common to all specific
structures represented by the generic structure and those that occur at least
once. The second stage involves an intermediate level of search based on a
reduced graph representation [Gillet et al. 1991]. Different types of reduced
graph can be employed. In one form, a structure is fragmented into cyclic and
acyclic components which themselves become nodes in a graph within which
the relationships between the fragments are retained. This enables real fragments
such as “phenyl” to be matched against homologous series identifiers such as
“aryl ring”. A second form of reduced graph involves the differentiation between
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Figure 1-16. Generation of ring/non-ring (left) and carbon/heteroatom (right) forms of reduced
graph. (Adapted from Downs, Gillet, Holliday and Lynch 1988.)

contiguous assemblies of carbon atoms and heteroatoms. These two forms are
illustrated in Figure 1-16 [Downs et al. 1988b]. The result of a successful search
at the reduced graph level is a list of pairs of matching nodes. The third and final
stage of the search involves a modified version of the Ullmann algorithm which is
applied on a node-by-node basis [Holliday and Lynch 1995].

7. RELATIONAL DATABASE SYSTEMS

It is rare for a database to contain just molecular structures; in almost all cases
other types of data will also be present. Most databases include an identifier for
each structure, such as a Chemical Abstracts Registry Number (a CAS number), an
internal registry number, catalogue number or chemical name. Other types of data
that may be present include measured and calculated physical properties, details
of supplier and price where appropriate, date of synthesis and so on. The structure
and organisation of any database is critical to the type of data that can be stored
and how it is retrieved.

Relational database systems have been used for many years to store numeric
and textual data [Begg and Connely 1998; Date 2000]. The principles underlying
relational databases are very well understood and there are many software systems
available, both commercial products as well as shareware and freeware. Until
recently, however, these systems had no structure-handling capabilities and hence
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they have not generally been suitable for the storage of chemical information. It
was therefore necessary to use separate chemical structure and relational database
systems, which had to be linked in some way. The recent introduction of structure-
handling capabilities (variously called data cartridges or datablades) into some of
the most widely used relational database systems is likely to have a major impact
on the storage, search and retrieval of chemical structure data in the near future.

In a relational database the data is stored in rectangular tables, the columns
corresponding to the data items and each row representing a different piece of
data. A typical database contains a number of tables, linked via unique identifiers.
By way of example, suppose we wish to construct a simple relational database to
hold inventory and assay data relating to biological testing. Three tables that might
be used to construct such a database are shown in Figure 1-17. As can be seen,
inventory information about each compound is held in one table (with relevant
data, such as date synthesised and amount). Information about each assay is held in

inventory
compound_id chemist_id date amount_gm mwt

MOL1 ARL 23/08/2002 0.01 320
MOL2 ARL 23/08/2002 0.14 440
MOL3 VJG 24/08/2002 0.05 260
MOL4 VJG 25/08/2002 1.52 376
MOL5 ARL 30/08/2002 0.26 486

assay_info
assay_id target substrate

1 trypsin Z-Arg
2 thrombin D-Phe-Pro-Arg
3 chymotrypsin Suc-Ala-Ala-Pro-Phe
4 thrombin Tos-Gly-Pro-Arg

assay_results
compound_id assay_id inhibition

MOL1 1 0.5
MOL2 2 1.3
MOL1 3 0.2
MOL2 4 1.1
MOL2 3 10
MOL4 2 0.3

Figure 1-17. Three tables that might be used in a relational database to store compound
registration information, assay details and assay results.
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1. Find all compounds synthesised by chemist ARL together with their amounts available 
SQL: select compound_id, amount_gm from inventory where chemist_id='ARL'

→ MOL1   0.01
MOL2   0.14
MOL5   0.26

2. Find all inhibition data for compounds tested against thrombin 
SQL: select compound_id, inhibition from assay_results r, assay_info a where r.assay_id=a.assay_id and 
a.target='thrombin'

→ MOL2   1.3
MOL2   1.1
MOL4   0.3

3. Find all compounds with thrombin inhibition less than 1.25 for which there is more than 1.0gm available 
SQL: select i.compound_id, amount_gm from assay_results r, inventory i, assay_info a where r.inhibition<1.25 
and r.compound_id=i.compound_id and i.amount_gm>1.0 and r.assay_id=a.assay_id and a.target=’thrombin’

→ MOL4   1.52

Figure 1-18. SQL queries that could be used with the tables shown in Figure 1-17.

a second table; the actual assay results themselves are stored in a third table. As can
be seen, this third table is arranged so that each assay result is a separate row. An
alternative would be to use one row per compound, with an entry for every assay.
A drawback of this alternative database design is that it is rather inefficient because
not every compound is tested in every assay. Moreover, the table would also need
to be extended by adding a new column whenever a new assay is introduced. This
is an example of normalisation. The results table in our database is linked to the
inventory and assay information tables through the use of identifiers (strings of
characters or numbers) that uniquely identify a particular row in the relevant table.
Note for example the presence of two thrombin assays in the assay info table; these
are distinguished through the use of different identifiers (the assay id column). It
is not necessary for an identifier to have any particular meaning; for this reason
they are often chosen as a sequence of integers. However, it is also possible to use
textual strings as illustrated by the use of the compound identifier in this example.

A relational database is typically queried using Structured Query Language
(SQL). Some SQL queries that might be used with these three tables are shown in
Figure 1-18. As can be seen, in some cases it is necessary to query across multiple
tables, an operation known as a join.

8. SUMMARY

Methods for the representation of 2D molecular structures form the foundation
for all of the techniques that we will discuss in this book. The central role played
by 2D database systems is reflected in the significant amount of effort that has been
expended to implement and optimise methods for the storage, search and retrieval



Representation and Manipulation of 2D Molecular Structures 25

of chemical structures and molecular data. Additional challenges are presented by
reaction and patent data. Historically, chemical structural data have been stored in
specialist database systems, which can lead to an unfortunate separation from other
types of data. However, recent developments in database technology are helping
to overcome this problem. In addition, the bitstring methods originally designed to
enable efficient substructure searching have found widespread use in many other
areas, such as similarity searching and the selection of diverse sets of compounds,
as will be seen in later chapters.



Chapter 2

REPRESENTATION AND MANIPULATION
OF 3D MOLECULAR STRUCTURES

1. INTRODUCTION

The methods described in Chapter 1 are solely concerned with 2D
representations of molecules based on the molecular graph. Such representations
may be considered to constitute the “natural language” of organic chemistry.
However, they only indicate which atoms are bonded together. The steric and
electronic properties of a molecule depend on how its atoms can be positioned
in space to produce its 3D structures or conformations. There has thus been much
interest in the development of algorithms and database systems that deal with 3D
representations of molecules and their conformationally dependent properties.

There are a number of challenges associated with the use of 3D representations.
Most molecules of interest can adopt more than one low-energy conformation and
in many cases the number of accessible structures is very large. It is therefore
necessary to have efficient ways to take conformational flexibility into account. A
true representation of a molecule’s properties and characteristics would require
very complex computational models such as quantum mechanics or molecular
simulation [Leach 2001]. These are inappropriate for dealing with large numbers
of molecules and so it is necessary to develop techniques that can represent the
key characteristics of a molecule’s conformational properties in a computationally
efficient manner.

In this chapter we will first introduce some of the concepts underlying 3D
methods by describing two widely used databases that contain experimentally
determined 3D data. We then consider the concept of a 3D pharmacophore. This
leads to the use of 3D databases derived purely from theoretical calculations,
methods for generating pharmacophores and the identification of potentially
useful molecules using 3D pharmacophore searching. Some background material
concerning molecular conformations and energy calculations can be found in
Appendix 2.

27
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2. EXPERIMENTAL 3D DATABASES

The data stored in a 3D database either comes from experiment or can be
calculated using a computational method. Of the experimental sources, the best
known are those involving structures solved using x-ray crystallography. The
Cambridge Structural Database (CSD) contains the x-ray structures of more than
400,000 organic and organometallic compounds [Allen et al. 1979; Allen 2002].
The Protein Data Bank (PDB) contains more than 44,000 x-ray and nuclear
magnetic resonance (NMR) structures of proteins and protein–ligand complexes
and some nucleic acid and carbohydrate structures [Bernstein et al. 1977; Berman
et al. 2000]. Both these databases are widely used and continue to grow rapidly.

The CSD was established in 1965 and is maintained by the Cambridge
Crystallographic Data Centre. It is possible within the CSD to retrieve structures
using many types of textual and structural queries, including substructure
searching. Thus one may retrieve the crystal structure(s) of an individual molecule
(e.g. aspirin) or all structures containing a quinoline ring system. It is also possible
to retrieve structures that meet specific 3D constraints. For example, one may wish
to retrieve all crystal structures in which a specific ring system adopts a particular
conformation (e.g. all examples of boat cyclohexane) or in which two functional
groups are separated by a particular distance or distance range.

Whereas the CSD is a true database system, the PDB is more a communal
repository of data files, one for each protein structure. Founded in 1971
the PDB now contains approximately 44,000 structures, most obtained using
x-ray crystallography but with some determined using NMR. The PDB is most
commonly accessed via a web interface, which enables structures to be retrieved
using various textual queries (such as by author, protein name, literature citation).
Some web interfaces also enable searches to be performed using amino acid
sequence information. As the number of protein structures has grown so it has
been recognised that the “flat file” system is inappropriate and more modern
database systems and techniques have been introduced based on the information
in the PDB. Several groups have also developed database systems that enable
chemical and/or geometric features to be included. For example, it is possible
in the Relibase system [Hendlich 1998] to search for protein–ligand complexes
where the ligand contains a particular substructure, or where the ligand makes
some specific intermolecular interaction with the protein.

The CSD and the PDB have also been used extensively for data mining, to
derive knowledge and rules about conformational properties and intermolecular
interactions. This knowledge can then be used in theoretical methods such
as conformational search algorithms or protein–ligand docking programs.
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A straightforward example is the analysis of the CSD to determine how bond
lengths depend upon the nature and environment of the atoms involved [Allen
et al. 1987]. The CSD is also invaluable for providing information about the
conformations of specific molecular fragments. For example one may identify the
low-energy conformations of a particular ring system or determine the preferred
torsion angles about specific bonds, as illustrated in Figure 2-1.
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Figure 2-1. A comparison of the torsion angle distributions for the O–C–C–O fragment (top)
and the C–C–C–C fragment (bottom), derived from the CSD. In each case all atoms were
required to be sp3 hybridised and only acyclic bonds were permitted. The distributions show
the distinct preference of the OCCO fragment to adopt gauche torsion values (±60◦) whereas
CCCC favours anti-values (±180◦).
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Figure 2-2. The intermolecular distribution of hydroxyl groups about esters as extracted from
the CSD. The much larger number of hydroxyl groups that interact with the carbonyl oxygen
in the ester functionality demonstrate its greater propensity to act as an acceptor than the ether
oxygen.

The CSD and PDB can be mined to provide information about intermolecular
interactions. An early study revealed that there were distinct distance and angular
preferences for hydrogen bonds, depending on the nature of the donor and
acceptor [Murray-Rust and Glusker 1984]. A more comprehensive range of such
intermolecular interactions is now available via the IsoStar program [Bruno et al.
1997]. For example, Figure 2-2 shows the distribution of OH groups about the
ester functional group in small-molecule crystal structures, demonstrating that the
carbonyl oxygen is a much stronger acceptor than the ether oxygen.

The PDB has been used extensively to further our understanding of the nature
of protein structure and its relationship to the amino acid sequence. For example,
various classification schemes have been proposed for dividing protein structures
into families [Orengo et al. 1993; Holm and Sander 1994; Murzin et al. 1995;
Brenner et al. 1997]. The structures in the PDB also form the basis for comparative
modelling (also known as homology modelling), where one attempts to predict the
conformation of a protein of known sequence but unknown structure using the
known 3D structure of a related protein. The PDB has also provided information
about the nature of the interactions between amino acids, and between proteins
and water molecules and small-molecule ligands.
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3. 3D PHARMACOPHORES

A major use of 3D database systems is for the identification of compounds that
possess 3D properties believed to be important for interaction with a particular
biological target. These requirements can be expressed in a variety of ways, one of
the most common being as a 3D pharmacophore. A 3D pharmacophore is usually
defined as a set of features together with their relative spatial orientation. Typical
features include hydrogen bond donors and acceptors, positively and negatively
charged groups, hydrophobic regions and aromatic rings. The use of such features
is a natural extension of the concept of bioisosterism, which recognises that
certain functional groups have similar biological, chemical and physical properties
[Thornber 1979; Patani and LaVoie 1996]. Some common bioisosteres are shown
in Figure 2-3.

3D pharmacophore searching can be particularly useful when trying to identify
structures that have the desired activity but which are from a previously unexplored
chemical series (sometimes referred to as “lead hopping”) [Sheridan and Kearsley
2002]. This is due to the more abstract nature of the 3D pharmacophore; it depends
on atomic properties rather than element types, and not on any specific chemical
connectivity.

The spatial relationships between the features in a 3D pharmacophore can be
specified as distances or distance ranges or by defining the (xyz) locations of the
features together with some distance tolerance (typically as a spherical tolerance
region). A simple example of a 3D pharmacophore based purely upon distance
ranges is given in Figure 2-4. It may also be possible to include other geometric
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Figure 2-3. A selection of common bioisosteres; each line contains a set of distinct functional
groups that can often be substituted for each other whilst retaining the biological activity.
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Figure 2-5. Some of the features that can be incorporated into 3D pharmacophores.

features such as centroids, planes and angles in a 3D pharmacophore together with
regions of space (excluded volumes) that should not be occupied by the ligand.
Some of these features are illustrated in Figure 2-5. Later in this chapter we will
consider in detail some of the methods that have been developed for automatically
deriving 3D pharmacophores from a set of active molecules.

4. IMPLEMENTATION OF 3D DATABASE
SEARCHING

In common with the substructure searching methods discussed in Chapter 1,
a two-stage procedure is most commonly used to perform 3D searches of databases
such as the CSD where the objective is to identify conformations that match the
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query. The first stage employs some form of rapid screen to eliminate molecules
that could not match the query. The second stage uses a graph-matching procedure
to identify those structures that do truly match the query.

One way to achieve the initial screen is to encode information about
the distances between relevant groups in the molecular conformation. This can
be achieved using bitstrings in which each bit position corresponds to a distance
range between a specific pair of atoms or groups of atoms (e.g. functional groups
or features such as rings). For example, the first position may correspond to the
distance range 2–3Å between a carbonyl oxygen and an amine, the second position
to the range 3–4Å between these two features and so on. Initially the bitstring
(or distance key) would contain all zeros. For each molecular conformation, the
distances between all pairs of atoms or groups are calculated and the appropriate
bits set to “1” in the distance key. It is common to use smaller distance ranges
for the more common distances found in 3D structures and larger distance ranges
for the less common distances; this provides a more even population distribution
across the distance bins than were a uniform binning scheme employed [Cringean
et al. 1990]. In addition to pairwise distances it is also possible to encode angular
information involving sets of three atoms and torsional information from four
atoms to further improve the search efficiency [Poirrette et al. 1991, 1993].

To perform a search, the distance key for the query is generated and used to
screen the database. Only those structures that remain after the screening process
are subjected to the more time-consuming second stage. This typically involves a
subgraph isomorphism method such as the Ullmann algorithm. The key difference
between the 2D and 3D searches is that in the former the only edges in the
molecular graph are those between atoms that are formally bonded together. By
contrast, in the corresponding 3D graph there is an edge between all pairs of
atoms in the molecule; the value associated with each edge is the appropriate
interatomic distance. Thus a 3D graph represents the topography of a molecule.
The query is often specified in terms of distance ranges; should the distance in
the database conformation fall within the bounds of these ranges then that would
be counted as a potential match. Potential matches are then confirmed by fitting
the relevant conformation to the query in Cartesian space. This final fitting step is
needed, for example, because stereoisomers cannot be distinguished using distance
information alone.

5. THEORETICAL 3D DATABASES

Experimental databases such as the CSD are extremely valuable sources of
information, but for most compounds no crystal structure is available. There is
also an increasing need to evaluate virtual compounds – structures that could
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be synthesised (e.g. using combinatorial chemistry) but which have not yet been
made. Even when experimental data is available, this usually provides just a single
conformation of the molecule which will not necessarily correspond to the active
conformation; most molecules have a number of conformations accessible to them.
It is thus desirable to include mechanisms for taking the conformational space of
the molecules into account during 3D database searching.

5.1 Structure-Generation Programs

One of the main reasons for the surge of interest in 3D database searching in
the 1990s was the development of structure-generation program that can take as
input a 2D representation of a molecule such as a connection table or a SMILES
string and generate a single, low-energy conformation. The two most widely used
structure-generation programs are CONCORD [Rusinko et al. 1988] and CORINA
[Gasteiger et al. 1990]. Both of these methods use a broadly similar approach. The
first step is to identify features such as rings, bond orders and stereocentres in the
molecule. Of particular interest for structure generation are rings and ring systems;
whereas it is relatively straightforward to construct a sensible 3D structure for the
acyclic portions of the molecule from standard bond lengths, bond angles and
torsional preferences, this is more difficult for the cyclic parts. Typically, the rings
and ring systems are constructed separately using a library of predefined structures
and a set of rules that determines how they should be connected together. Next, the
acyclic side chains are added in a default low-energy conformation and finally the
structure is adjusted to deal with any high-energy, unfavourable interactions.

Most structure-generation programs are designed to produce a single
conformation for each molecule. The earliest 3D database systems thus contained
just one conformation for each molecule. Whilst this represented a significant
advance, the limitations of using a single conformation were widely recognised.
One way to deal with this problem is to modify the conformation at search
time. This is usually achieved by “tweaking” the conformation. Given a set of
distance constraints between pairs of atoms it is possible to calculate the values
that the torsion angles of the intervening rotatable bonds should adopt in order
to enable the constraints to be satisfied [Shenkin et al. 1987; Hurst 1994]. This
therefore provides a mechanism for generating a conformation that matches the
pharmacophore.

An alternative to the tweak method is to store multiple conformations for
each molecule in the database. A large number of methods have been introduced
for exploring conformational space; these methods are crucial for a number of
procedures in chemoinformatics and computational chemistry. In the next section
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we therefore provide a summary of some of the key methods with a particular
focus on the two that are most commonly used: systematic search and random
search.

5.2 Conformational Search and Analysis

The usual goal of a conformational analysis is the identification of all
accessible minimum-energy structures of a molecule. Even for simple molecules
there may be a large number of such structures, making conformational analysis a
difficult problem. The minimum with the lowest energy is referred to as the global
minimum-energy conformation. It is important to note that the global minimum-
energy conformation may not necessarily correspond to a biologically active 3D
structure.

The usual strategy in conformational analysis is to use a search algorithm to
generate a series of initial conformations. Each of these in turn is then subjected to
energy minimisation (see Appendix 2) in order to derive the associated minimum-
energy structure [Leach 1991, 2001; Scheraga 1993]. Molecular mechanics is
usually used for the energy calculation and minimisation step; only for rather small
systems is it feasible to consider quantum mechanical methods.

5.3 Systematic Conformational Search

In the systematic search method conformations are generated by systematically
assigning values to the torsion angles of the rotatable bonds in the molecule.
Each torsion angle is restricted to a predetermined set of possible values.
The simplest type of systematic search algorithm is the grid search, in which
conformations corresponding to all possible combinations of torsion angle
values are generated. As a simple example, suppose we have a molecule
with two variable torsion angles in which the first torsion angle adopts the
values 60◦, 180◦ and −60◦ and the second torsion angle adopts values 0◦ and
180◦. A total of six conformations will be generated by the grid search (i.e.
60◦, 0◦; 60◦, 180◦; 180◦, 0◦; 180◦, 180◦; −60◦, 0◦; −60◦; 180◦), each of which is
then subjected to energy minimisation.

If the number of values permitted to torsion angle i is ni and there are N
variable torsion angles in the molecule then the total number of conformations C
generated by the grid search is:

C =
N∏

i=1

ni (2.1)
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+60� −60�

Figure 2-6. The gauche interaction arises from two adjacent bonds in an alkyl chain having
torsion angles of +60 and −60.

The number of structures thus grows exponentially with the number of
rotatable bonds in the molecule. This is sometimes referred to as a combinatorial
explosion. However, significant improvements in efficiency can be made to the
grid search if one recognises that a large proportion of the structures so generated
often contain high-energy, unfavourable interactions due to clashes between
parts of the structure. It is inappropriate to subject these structures to the time-
consuming energy minimisation step. These unfavourable interactions often arise
from particular combinations of torsion angles. A simple example is the so-called
gauche interaction, which results from two adjacent bonds in an alkyl chain having
torsion angle values of 60◦ and −60◦ (Figure 2-6).

Having identified a problem such as this we would like to eliminate from
further consideration any other structure that contains the same offending
combination of torsion angles. This can be achieved using a depth-first search
with tree pruning. We first determine the order in which the torsion angles will
be varied. We then try to generate a conformation in which all torsion angles
have their first value assigned. If this is successful then the second conformation
is generated by modifying the value of the last torsion angle; when all of its
values are exhausted the algorithm backtracks to consider the penultimate torsion
angle, and so on. This can be represented in a tree-like structure, as shown in
Figure 2-7. Should a problem be encountered the algorithm immediately rejects
all combinations that lie below that particular node in the tree.

It is important when using this method that the torsion angles are considered
in an appropriate sequence so that once the conformation of a part of the molecule
has been assigned it will not be changed by any subsequent torsional assignments.
Structures containing rings can be difficult for the systematic search method. It is
necessary to break an appropriate number of ring bonds to give a pseudo-acyclic
structure which is then subjected to the search as usual. It is also necessary to
include extra checks on the resulting conformation to ensure that the ring is formed
properly.

When all of the nodes in the search tree have been considered the search is
complete; the defined end point is one of the advantages of the systematic search
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Figure 2-7. Tree representation of conformational space used in the depth-first search with
backtracking. In this simple example there are three variable torsion angles with three, two
and two values permitted to each respectively, giving a total of 12 possible conformations. Each
node in the tree represents a state in which between one and three of these torsions have been
assigned. The nodes are visited in the sequence 0–1–4–10–4–11–4–1–5–12–5–13–5–1–0–2–
6–14 and so on. Should a problem be detected the algorithm immediately backtracks to the
appropriate node. For example, if a problem arises at node 4 then the algorithm moves to node
5; a problem at node 2 leads to node 3.

when compared to most other methods. Several extensions that aim to improve
the efficiency and utility of the basic systematic search have been described
[Bruccoleri and Karplus 1987; Lipton and Still 1988; Goodman and Still 1991].
One strategy to deal with the combinatorial explosion is to use larger fragments,
or building blocks [Gibson and Scheraga 1987; Leach et al. 1987, 1988]. This is
because there are usually many fewer combinations of fragment structures than
combinations of torsion angles. Fragment building is particularly useful when the
molecule contains rings and ring systems, which, as noted above, cause particular
difficulties for the systematic search method.

5.4 Random Conformational Search

A number of random conformational search methods have been devised
[Saunders 1987; Li and Scheraga 1987; Ferguson and Raber 1989; Chang et al.
1989]. All of them involve some form of iterative procedure in which a structure is
selected from those previously generated, randomly modified and then minimised.
If this results in a new conformation it is added to the list of structures found.
The process is then repeated. In contrast to the systematic search methods
there is no natural end point for a random search; the process continues until
either a predefined number of iterations has been attempted and/or until no new
conformations can be generated. Different random search methods differ in the
way that the structure is modified and in the way that the structure is selected for
the next iteration. Modifications are most frequently achieved by either varying
torsion angles (keeping the bond lengths and angles fixed) or by changing the
(xyz) coordinates of the atoms. There are many ways to select the structure for
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the next iteration; perhaps the simplest method is to use the structure generated
in the previous step. An alternative is to select at random from all the structures
generated previously, possibly weighting the selection towards those selected the
least. The Metropolis Monte Carlo scheme may also be used to make the selection.
Here, if the energy of the new structure (Vnew) is lower than its predecessor (Vold)

then it is used as the next starting structure. If Vnew is higher than Vold then the
Boltzmann factor, exp[−(Vnew − Vold)/kT ], is calculated (k is the Boltzmann
constant and T is the temperature). If the Boltzmann factor is larger than a random
number between zero and one then the new structure is selected. If not then the
previous structure is retained. The Metropolis method therefore makes it possible
for higher-energy structures to be selected; these may correspond to previously
unexplored regions of conformational space.

A commonly used version of the Monte Carlo method is simulated annealing
[Kirkpatrick et al. 1983]. Here, the temperature is gradually reduced from a
high value to a low value. At high temperatures the system can overcome high-
energy barriers due to the presence of the temperature in the denominator of the
Boltzmann factor; this enables it to explore the search space very widely. As the
temperature falls so the lower energy states become more probable. By analogy
with the physical process of annealing, used in the manufacture of very large single
crystals of materials such as silicon, at absolute zero the computational system
should exist in the global minimum-energy state. In the case of conformational
analysis this would correspond to the global minimum-energy conformation.
However, this would require an infinite number of temperature decrements at each
of which the system would have to come to equilibrium. Thus in practice it is not
guaranteed to find the global energy minimum. Several simulated annealing runs
would therefore typically be performed.

5.5 Other Approaches to Conformational Search

There are many alternatives to the systematic and random methods; two that
have been quite widely used are distance geometry and molecular dynamics.
Distance geometry [Crippen 1981; Crippen and Havel 1988; Blaney and Dixon
1994] uses a description of molecular conformation based on interatomic distances
allied to various mathematical procedures to generate structures for energy
minimisation. Molecular dynamics solves Newton’s equations of motion for the
atoms in the system, to give a trajectory that defines how the positions of the
atoms vary with time. Snapshots taken from the trajectory may then be subjected to
minimisation in order to generate a sequence of minimum-energy conformations.
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The choice of conformational search method is governed by many factors;
some methods in particular require a significant amount of user input to set up
each calculation and are therefore more suited to detailed analyses of individual
molecules. A common goal in such cases is to identify the bioactive conformation,
for example of a cyclic peptide. Other techniques are more amenable to
automation, and so can be used for the construction of 3D databases and various
kinds of virtual screening calculations on large collections of molecules. Such
calculations can involve very large numbers (millions) of molecules and so it is
important that the conformational search method is automatic (i.e. able to operate
without user intervention), efficient and robust.

5.6 Comparison and Evaluation of Conformational Search
Methods

Historically, conformational search methods were usually compared by
examining a very small number of rather complex molecules. A classic example
was the comparison of five different search methods (systematic search, Cartesian
and torsional random methods, distance geometry and molecular dynamics)
using cycloheptadecane (C17H34) [Saunders et al. 1990]. Recent studies have
concentrated on comparison with experiment, using databases of structures solved
by x-ray crystallography. Structures from the PDB have been of particular interest
as the ligand conformations correspond to the presumed bioactive conformations
of the molecules. Although the PDB contains a large number of protein–ligand
complexes, not all of these may be considered suitable for a comparative study. It
is common to restrict the ligands to small, “drug-like” molecules taken from high-
resolution structures. An example of such a study is that of Boström (2001) who
evaluated five different programs against a set of 32 ligands. Various performance
criteria were used, including the ability of each program to generate the bioactive
conformation together with the number of conformations generated by each
method and the speed of calculation. Also of interest are the energetic changes
that accompany ligand binding and whether the bound conformation is at the
global or a local energy minimum. The strain energy that accompanies binding
is found to vary somewhat; the study of Boström et al. [1998] suggested that for
approximately 70% of the systems they studied the bioactive conformation was
within 3 kcal/mol of the global energy minimum whereas Perola and Charifson
[2004] found that whilst 60% of ligands bound with strain energies less than
5 kcal/mol at least 10% of ligands bound with strain energies greater than
9 kcal/mol. This latter study also highlighted the need to use higher-energy
thresholds for more flexible molecules to ensure that the bioactive conformation
was included in the ensemble of conformations generated.
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5.7 The Generation of Distance Keys for Flexible Molecules

The database systems currently used for 3D pharmacophore searching enable
very complex queries to be formulated, involving the use of many kinds of
pharmacophoric and geometric features. It is also possible to combine both 2D
and 3D information into the same query. Nevertheless, searches are still generally
performed using the principles outlined earlier, with an initial screen based on a
distance key being followed by a more time-consuming exact match.

When a set of conformations is available from experiment or from a
computational method then it is usual to combine the distance keys for all the
conformations of the molecule. This is done by taking the union of the distance
keys for the individual conformations to give a single ensemble distance key that
encodes the accessible conformational space of the molecule. For those systems
that store just a single conformation and use a tweak-based approach it is still
possible to determine constraints on the various interfeature distances from the
2D structure. One approach that has been employed is triangle smoothing. This
procedure relies on the fact that combinations of three distances must meet
certain geometrical requirements. There are two triangle inequality rules. First, the
maximum value of the distance AC cannot be more than the sum of the maximum
values of the distances AB and BC. Second, the minimum value of the distance
AC cannot be less than the difference between the minimum value of AB and the
maximum value of BC (see Figure 2-8). By repeatedly applying these constraints
to the distance ranges within a molecule it is possible to derive lower and upper
bounds on the interatomic and inter-feature distances.

UAC

UAB UBC LAB

LAC LBC

A

B

C

Figure 2-8. Graphical illustration of the two triangle inequalities: UAC ≤ UAB + UBC ; LAC ≥
LAB − UBC where L indicates the lower bound and U the upper bound.
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6. METHODS TO DERIVE 3D PHARMACOPHORES

How can 3D pharmacophores be determined? Traditionally, 3D
pharmacophore approaches are used when active molecules are known but where
the structure of the target receptor is not available. The process of deriving a
3D pharmacophore is called pharmacophore mapping. There are two key issues
to consider when deriving 3D pharmacophores. The first issue concerns the
conformational flexibility of the molecules and how to take this into account. The
second problem concerns the fact that there may be many different combinations
of pharmacophoric groups within the molecules. As a consequence, there may be
hundreds of potential 3D pharmacophores. The objective is to determine which of
these potential pharmacophores best fits the data. In general, the aim is to identify
the 3D pharmacophore(s) that contains the largest number of features common to
all of the active molecules, and where these common features can be presented
by each molecule in a low-energy conformation. Note that the generation and
use of 3D pharmacophores is therefore based upon the assumption that all of the
molecules bind in a common manner to the biological target.

Various methods have been devised for performing pharmacophore mapping;
in the following sections we will discuss four of the most commonly used
techniques: constrained systematic search, clique detection, the maximum
likelihood method and the GA approach.

6.1 Pharmacophore Mapping Using Constrained Systematic
Search

The constrained systematic search approach has its origins in the development
of efficient algorithms for systematically exploring conformational space [Motoc
et al. 1986]. As explained in the discussion on systematic conformational
search methods, such procedures have an exponential dependence on the number
of rotatable bonds in the molecule. By making use of tree-pruning methods
(described earlier) to eliminate unfavourable, high-energy conformations the
efficiency of these algorithms can be considerably improved. The constrained
systematic search procedure for pharmacophore generation further improves the
efficiency by deriving additional constraints on the torsional angles.

The first part of the procedure is to identify the pharmacophoric groups in each
molecule that will be overlaid in the final pharmacophore. The most rigid molecule
is then taken and its conformational space explored. During the conformational
search the distances between all pairs of the selected pharmacophoric groups
are recorded. The second most rigid molecule is then taken, and using the
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Figure 2-9. As successive molecules are considered in the constrained systematic search
procedure so the distance constraints between pharmacophoric features become more restricted.
Thus the figure on the left shows the distances permitted to the first molecule; these regions may
be further restricted after analysis of the second molecule. (Adapted from Leach 2001.)

inter-pharmacophore distance ranges derived from the first molecule, constraints
on the values permitted to each of its torsion angles are derived. Thus the only
torsion angle values explored for the rotatable bonds in the second molecule
are those that may permit it to match the pharmacophore distances found for
the first molecule. As more and more molecules are considered so the distance
ranges become more and more restricted (see Figure 2-9). When the more flexible
compounds are considered the expectation is that only very limited ranges are
possible on each of its torsion angles, making the search very efficient.

The classic application of the constrained systematic search procedure is
to the discovery of 3D pharmacophores for the inhibition of Angiotensin
Converting Enzyme (ACE), an enzyme involved in the regulation of blood pressure
[Dammkoehler et al. 1989]. Typical inhibitors of ACE, some of which are shown
in Figure 2-10, contain a zinc-binding group such as a thiol or a carboxylic
acid, a terminal carboxylic acid group that interacts with a basic residue in the
protein and an amido carbonyl group which acts as a hydrogen bond acceptor.
The constrained systematic search method derives distance ranges between these
features, accessible to all of the ACE inhibitors in a low-energy conformation. Two
pharmacophores result from this analysis. Note that one of the pharmacophoric
features is an extended point, corresponding to the presumed location of the
zinc atom in the protein. The constrained systematic search was three orders
of magnitude faster than an equivalent systematic search on each individual
molecule, illustrating the advantage of using prior information to restrict the
conformational search space.

A drawback of the constrained systematic search approach is that it is
necessary to specify manually beforehand which pharmacophoric groups in each
molecule are involved in interactions with the receptor, and the correspondences
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Figure 2-10. Some typical ACE inhibitors together with the features and the five distances used
to define the 3D pharmacophores as discovered by the constrained systematic search method
[Dammkoehler et al. 1989]. The two pharmacophores found correspond to different values of
the distances d1−d5. Du indicates the presumed location of the zinc atom in the enzyme (the
extended point).

between these groups. It may be difficult to do this when there are many potential
pharmacophores in the molecules, giving rise to many possible matches. The three
remaining methods that we will discuss do not require the user to specify such
correspondences; rather the algorithms determine them automatically.

6.2 Pharmacophore Mapping Using Clique Detection

A clique in a graph is a completely connected subgraph. It contains a subset of
the nodes in the graph such that there is an edge between every pair of nodes in
the subgraph. A key characteristic of a clique is that it cannot be extended by the
addition of extra nodes; a simple example is shown in Figure 2-11. A maximum
clique is the largest such subgraph that is present. An efficient algorithm for clique
detection has been developed by Bron and Kerbosch (1973) and is often found to
be a suitable approach for applications in chemoinformatics.

The clique detection approach to pharmacophore mapping can be explained
using the following simple example. Consider one conformation for each of two
molecules, each of which contains two donors (D1, D2 in the first molecule and
d1, d2 in the second) and two acceptors (A1, A2 and a1, a2). These sets of features
are illustrated in Figure 2-12. All possible pairs of matching features are generated.
There are eight in this case: A1a1, A1a2, A2a1, A2a2, D1d1, D1d2, D2d1, D2d2.
Each of these pairings constitutes a node in a new graph which is sometimes
called a correspondence graph. An edge is created between all pairs of nodes in
the correspondence graph where the corresponding inter-feature distances in the
two molecules are equal (within some tolerance). If we assume for the sake of
simplicity that the distances in our illustration need to be exactly equal then we



44 An Introduction to Chemoinformatics

Figure 2-11. Highlighted in bold are the two cliques present in this graph (other than trivial
two-node cliques).
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Figure 2-12. Simple illustration of clique detection method. Consider two molecules, each of
which contains two donors and two acceptors. The two graphs at the top illustrate the distances
between these sets of features in the two conformations being considered. There are eight nodes
in the correspondence graph (bottom) but only six edges. From these, there is one maximum
clique which consists of three pairs of matching features (bottom left). (Reproduced with
permission from [Gillet and Leach 2006].)

can for example draw an edge between the nodes A1a1 and D1d2(distance = 4)

and also between the nodes D2d1 and A2a2(distance = 7). The bottom half of
Figure 2-12 shows the eight nodes of the correspondence graph with edges drawn
between the matching nodes. This graph differs somewhat from those we have
encountered previously, insofar that there is not necessarily a path between all
nodes (it is a disconnected graph). In this case the two-node subgraph (A1a1,
D1d2) does not constitute a valid clique as a third node (corresponding to the
pairing D2d1) can be added to form the three-node clique shown in bold. This is the
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maximum clique present and represents a possible 3D pharmacophore consisting
of three features. The corresponding subgraphs in the original graphs are shown
in bold. The subgraph consisting of nodes (A2a1, D1d1 and D2d2) is not fully
connected and therefore is not a clique, although it does contain two two-node
cliques.

The first stage of the DISCO program which uses clique detection for
pharmacophore mapping [Martin et al. 1993; Martin 2000; DISCO] involves
the generation of a series of low-energy conformations for each molecule. The
molecule with the smallest number of conformations is chosen as the “reference”
molecule. Each of its conformations is considered in turn as the reference
conformation. All the conformations of the other molecules in the set are then
compared to this reference conformation and the cliques identified. Having
considered each of the conformations of the reference molecule the entire set of
cliques is then examined. Any clique that is common to all of the molecules, such
that it is matched by at least one conformation of each molecule in the set, is a
common pharmacophore.

6.3 The Maximum Likelihood Method for Pharmacophore
Mapping

The maximum likelihood method Catalyst/HipHop [Barnum et al. 1996;
Catalyst] also uses a pre-calculated set of low-energy conformations. Typically,
these are obtained using poling, a conformational search method designed to
generate a relatively small set of conformations that “covers” pharmacophore
space [Smellie et al. 1995a, b]. The poling method adds an additional penalty term
to the energy function during the minimisation part of the conformational analysis.
This penalty term has the effect of “pushing” the conformation away from those
found previously.

Having generated a set of conformations for each molecule, the first step in the
maximum likelihood method is to identify all configurations of pharmacophoric
groups that are present in the molecules. Each molecule is taken in turn as a
reference structure and its conformations examined. All possible combinations of
pharmacophoric groups contained within it are generated exhaustively (e.g. donor–
acceptor–aromatic ring centroid; acceptor–acceptor–hydrophobe–donor). Each of
these configurations of pharmacophoric groups in 3D space is then compared
to the other molecules in the set in order to determine whether they possess a
conformation that can be successfully superimposed on the configuration. In this
step it is not required that all molecules match all of the features (i.e. a molecule
can be active despite lacking a feature that is present in the binding motif of other
active molecules).
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This first step can generate a large number of possible configurations which
are then scored and ranked according to how well the molecules map onto them
and also according to their “rarity”. The general strategy is to score more highly
those configurations (referred to as hypotheses) that are well matched by the active
molecules in the set but which are less likely to be matched by a large set of
arbitrary molecules. The scoring function used is:

score = M
K+1∑

x=0

q (x) log2

(
q (x)

p (x)

)
(2.2)

where M is the number of active molecules in the set and K is the number of
pharmacophoric groups in the hypothesis. The summation in Equation 2.2 takes
account not only of the hypothesis itself but also other configurations containing
K−1 features (there are K such configurations). An active molecule is assigned
to the class x = K + 1 if it matches all the features, to one of the classes x = 1
through x = K if it matches one of the configurations with one feature removed,
or to the class x = 0 if it matches neither the full hypothesis nor one of the sub-
configurations. q(x) is the fraction of active molecules that matches each of the
classes x . p(x) corresponds to the fraction of a large set of arbitrary molecules that
would match the class x configuration (i.e. the “rarity” value mentioned above).
Pharmacophores that contain relatively uncommon features such as positively
ionisable groups are less likely to be matched by chance than pharmacophores
that contain more common features such as hydrophobic features and so have
a smaller value of p(x). In addition, the greater the geometrical distribution of
features (dependent on the sum of the squares of the distances between the features
and the common centroid) the higher the rarity value. A higher score for an
hypothesis is thus associated with a higher value of q(x) (i.e. more of the active
molecules match) and lower values of p(x) (i.e. it is less likely that an arbitrary,
non-active molecule would match). The values of p(x) are obtained using a
mathematical model previously derived from an analysis of a set of biologically
active molecules.

Another feature of the maximum likelihood method that contrasts with the
constrained systematic search and the clique detection methods is its use of
location constraints to define the pharmacophore rather than distance ranges
between the features [Greene et al. 1994]. These location constraints usually
correspond to a spherical region in 3D space, centred on a point, within which the
relevant pharmacophoric feature should be positioned. The radius of the spherical
region may vary; the different values reflect differences in the dependence of
interaction energy on distance for different types of interaction. For example, an
ionic interaction is typically more sensitive to distance changes than a hydrogen
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bond and so the tolerance on a charged feature would be correspondingly smaller.
Another requirement is that the pharmacophoric features must be “accessible”,
rather than being buried inside the molecule.

6.4 Pharmacophore Mapping Using a Genetic Algorithm

Genetic algorithms (GAs) are a class of optimisation methods that are based
on various computational models of Darwinian evolution [Goldberg 1989] (the
term evolutionary algorithms is also used to describe such methods). GAs have
found widespread use in many fields including computational chemistry and
chemoinformatics [Clark and Westhead 1996; Jones 1998; Clark 2000]; we will
discuss applications in protein–ligand docking, the generation of Quantitative
Structure–Activity Relationships (QSAR) models, and library design in later
chapters. In this section we will introduce the concepts of genetic and evolutionary
algorithms using the pharmacophore-mapping procedure (GASP) described by
Jones et al. (1995a, 2000; GASP). It should be noted that this represents just
one way in which a GA can be implemented; there are many variants on the GA
described here.

Genetic and evolutionary algorithms involve the creation of a population of
potential solutions that gradually evolves towards better solutions. This evolution
is dependent upon, and assessed using, a fitness function which provides a
mechanism to score and therefore rank different members of the population.
Another common feature is the use of a chromosome to encode each member
of the population. The chromosome may be stored in a variety of ways, most
commonly as a linear bitstring (i.e. a sequence of “0”s and “1”s). However it is
also possible to store the chromosome as a sequence of integers or real numbers.
The chromosomes form the basis for the generation of new potential members of
the population.

In GASP the chromosome consists of 2N -1 strings, where N is the number
of molecules. N binary strings are used to represent the torsion angle values in
the molecules (and so each specifies one molecule’s conformation, as illustrated
in Figure 2-13). Each angle is represented by eight bits (one byte); this allows
the representation of integers in the range 0–255. The actual value encoded is
rescaled to give a real number between 0 and 2π to be used as an angle of
rotation. N -1 integer strings are used to represent the way in which a base molecule
(chosen as the molecule with the smallest number of pharmacophore features)
maps onto each of the other molecules. These mappings are used to superimpose
each molecule in the appropriate conformation onto the base molecule using
a molecular-fitting procedure (see Appendix 2). When the molecules have been
superimposed the fitness value is calculated. The fitness function is dependent on
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Figure 2-13. The three torsion angles of the molecule indicated are each encoded by one byte
(eight bits) for use in the GA. Torsion angle τ1 is 203(≡ 1+2+8+64+128) which corresponds
to an angle of rotation of 4.98 radians.
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Figure 2-14. The crossover operator randomly selects a cross position and then exchanges the
bits either side to give two new chromosomes.

the number and similarity of the features that are overlaid, the volume integral of
the superimposed ensemble of conformations; and the van der Waals energy of the
molecular conformations.

An initial population of solutions is first created via the random generation
of a set of chromosomes. Each of these is scored using the fitness function. The
population then evolves to explore the search space and (hopefully) to identify
better solutions. To generate new members of the population the genetic operators
crossover and mutation are applied. In crossover two parent chromosomes are
taken, a cross position is randomly selected and two new child chromosomes are
produced by swapping the bits either side of the cross position, as illustrated in
Figure 2-14 for binary bitstrings. The mutation operator involves flipping a bit (for
a binary chromosome) or altering the value of an integer to a new value chosen at
random from the set of allowed values (for an integer string).

GASP uses steady-state reproduction in which a small number of children
are created in each iteration; the same number of members are removed from
the population and are replaced by the new children [Davis 1991]. Parent
chromosomes are selected for reproduction using roulette wheel selection which
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biases the selection towards fitter members. It is analogous to spinning a roulette
wheel with each member of the population having a slice of the wheel of size
proportional to its fitness so that the “best” members of the population produce
proportionately more offsprings. For example, if the fitness values are 2, 3, 5
and 6 then the relative sizes of the wheel slices will be 2/16, 3/16, 5/16 and
6/16 respectively. The crossover and mutation operators are then applied with the
new children being scored and inserted into the population. Having completed
one cycle of the GA, the procedure is repeated. The process continues either
for a predetermined number of iterations or until convergence is reached (i.e.
no better solution can be found). The output is the best-scoring solution found,
according to the fitness function. A GA is at heart a random procedure (i.e. it is
non-deterministic). Thus each run will typically generate a different solution and
so it is usual to perform several runs to generate a series of solutions which are
ranked according to their fitness values.

In GASP each molecule is initially represented by a single conformation
and the conformational space is explored at search time. This contrasts with
the previous approaches where multiple conformers are generated prior to
pharmacophore generation and each conformer is subsequently treated as rigid
molecule.

6.5 Other Approaches to Pharmacophore Mapping

The four pharmacophore mapping methods described above have been
available for many years and some of their limitations have been highlighted
[van Drie 2003]. For example, one study compared the performance of three
of the methods using structures taken from protein–ligand complexes extracted
from the PDB [Patel et al. 2002]. In this case the common pharmacophore could
be unambiguously identified, but the results were disappointing. Recognising
these limitations several groups have initiated the development of new approaches
involving a range of interesting algorithms. For example, Feng et al. [2006] first
represent the molecules in the set as bitstrings with one bitstring per molecular
conformation. They use a modification of a Gibbs sampling algorithm that was
previously applied to align DNA and protein sequences to identify a set of
conformers, one for each molecule, that have specific bits in common. Clique
detection is then used to define pharmacophore hypotheses based on the alignment.
An interesting characteristic of the method is that it is able to find multiple
hypotheses, which are each satisfied by different compounds thus allowing the
identification of multiple binding modes. Richmond et al. [2004] have developed
a novel method for the pairwise alignment of molecules that is based on an image
recognition algorithm. Pairs of atoms, one from each molecule, are tentatively
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matched using an algorithm for solving the linear assignment problem. The
initial atom-based and pairwise method has subsequently been modified to handle
multiple molecules represented by pharmacophoric features to form a component
of a new pharmacophore identification program. Recognising that a trade-off
often exists between the alignment that can be achieved and the conformations
adopted by molecules, Cottrell et al. [2004] have extended the GA approach
to identify multiple plausible pharmacophore hypotheses. The benefits of these
recent developments have yet to be proved, but given current efforts in this area, it
is likely that significant progress will continue to be made.

6.6 Practical Aspects of Pharmacophore Mapping

Automated methods for pharmacophore mapping can offer significant benefits,
but as with any other technique it is important to pay close attention to the
construction of the set of molecules used as input and to the results produced.
For most programs an “ideal” data set will contain a number of high-affinity
molecules from several different chemical series that do not possess too much
conformational freedom and do not have too many pharmacophoric features.
These last two characteristics reduce the complexity of the search space.
Stereoisomers or diastereoisomers of the same molecule that have different
activities can be particularly informative when searching for a 3D pharmacophore.
The output from a pharmacophore-mapping calculation should also be carefully
examined to ensure that each active compound has a good geometric fit to the
pharmacophore in a reasonable, low-energy conformation. Where appropriate the
pharmacophore should also be consistent with any known relationships between
the chemical structure and the biological activity. As we have discussed, the
methods for pharmacophore mapping differ quite extensively and so it may be
appropriate (if possible) to use more than one method for a given data set.

Several of the methods for pharmacophore mapping permit the use of site
points (also known as extended points) in deriving the pharmacophore. These
correspond to the presumed locations of atoms in the protein. The use of site
points can account for the fact that two different ligand atoms may be able to
bind to the same protein atom yet be positioned in quite different locations within
the binding site, as illustrated in Figure 2-15. Indeed, it is possible to derive 3D
pharmacophores directly from a protein x-ray structure by analysing the binding
site and determining regions where ligand atoms or functional groups might be
able to interact strongly with the protein. The active site of the protein may itself
be represented through the use of exclusion spheres (see Figure 2-5). These are
regions where a ligand atom may not be positioned (as it would clash with a protein
atom). An alternative to the use of exclusion spheres is to define an inclusion
volume; this is a region of space within which the ligand is required to fit.
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Figure 2-15. It is not always necessary for two atoms to be located in the same position in the
binding site in order to interact with the same protein atom. In this case the carbonyl oxygen
and the thiazole nitrogen both form a hydrogen bond with the same protein NH group but with
different geometries.
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Figure 2-16. Identification of muscarinic M3 receptor antagonists using 3D pharmacophore
mapping and database searching [Marriott et al. 1999]. pA2 is a measure of biological activity
with a larger number representing a more potent compound.

7. APPLICATIONS OF 3D PHARMACOPHORE
MAPPING AND 3D DATABASE SEARCHING

Since the introduction of commercial software for performing pharmacophore
mapping and 3D database searching there has been a steady stream of publications
describing the application of these methods, typically to the discovery of new
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chemical series for drug discovery. One example is that reported by Marriott
et al. [1999] who were searching for molecules active against the muscarinic
M3 receptor. Three series of compounds previously reported in the literature
were chosen to derive the 3D pharmacophore using the clique-detection method.
Five possible pharmacophore models were generated, each containing at least
four features. These were visually examined using molecular graphics and two
were selected for the 3D database search. These two pharmacophores contained
a positively charged amine, a hydrogen bond acceptor and two hydrogen bond
donor sites. The 3D database searches gave 172 molecules for testing; three of
these compounds had significant activity with one being particularly potent and
also amenable to rapid chemical synthesis (Figure 2-16).

8. SUMMARY

3D database searching methods can often offer a very attractive alternative or
complement to the more traditional 2D searching techniques. Of particular note
is their ability to identify molecules with similar properties but very different
underlying chemical structures. For example, a 3D pharmacophore, which defines
how molecules can be overlaid on the basis of their presumed common mode of
binding at a biological receptor, can be used to search a database with the aim of
identifying new lead series. In addition to the methods described in this chapter
there has also been much interest in the calculation of alignments and similarities
based on molecular fields. The two most common fields to be considered are the
electrostatic and steric fields, but other properties are also possible. These methods
will be discussed in more detail in Chapter 5.



Chapter 3

MOLECULAR DESCRIPTORS

1. INTRODUCTION

The manipulation and analysis of chemical structural information is made
possible through the use of molecular descriptors. These are numerical values
that characterise properties of molecules. For example, they may represent the
physicochemical properties of a molecule or they may be values that are derived
by applying algorithmic techniques to the molecular structures. Many different
molecular descriptors have been described and used for a wide variety of purposes.
They vary in the complexity of the information they encode and in the time
required to calculate them. In general, the computational requirements increase
with the level of discrimination that is achieved. For example, the molecular
weight does not convey much about a molecule’s properties but it is very rapid
to compute. By contrast, descriptors that are based on quantum mechanics may
provide accurate representations of properties, but they are much more time-
consuming to compute. Some descriptors have an experimental counterpart (e.g.
the octanol–water partition coefficient), whereas others are purely algorithmic
constructs (e.g. 2D fingerprints).

In this chapter we will describe commonly used molecular descriptors that can
be applied to relatively large data sets. These include descriptors that represent
properties of whole molecules such as log P and molar refractivity; descriptors
that can be calculated from 2D graph representations of structures such as
topological indices and 2D fingerprints; and descriptors such as pharmacophore
keys that require 3D representations of structures. We conclude by considering
how descriptors can be manipulated and combined together. Our emphasis will be
on descriptors that are properties of the whole molecule, rather than of substituents.
The latter type of descriptor was very important in the development of QSARs, and
will be briefly covered in Chapter 4.

53
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2. DESCRIPTORS CALCULATED FROM THE 2D
STRUCTURE

2.1 Simple Counts

Perhaps the simplest descriptors are based on simple counts of features such
as hydrogen bond donors, hydrogen bond acceptors, ring systems (including
aromatic rings), rotatable bonds and molecular weight. Many of these features
can be defined as substructures or molecular fragments and so their frequency
of occurrence can be readily calculated from a 2D connection table using the
techniques developed for substructure search. For most applications, however,
these descriptors are unlikely to offer sufficient discriminating power if used in
isolation and so they are often combined with other descriptors.

2.2 Physicochemical Properties

Hydrophobicity is an important property in determining the activity and
transport of drugs [Martin and DeWitte 1999, 2000]. For example, a molecule’s
hydrophobicity can affect how tightly it binds to a protein and its ability to
pass through a cell membrane. Hydrophobicity is most commonly modelled
using the logarithm of the partition coefficient between n-octanol and water
(log P). The experimental determination of log P can be difficult, particularly for
zwitterionic and very lipophilic or polar compounds; data are currently available
for approximately 30,000 compounds only [Mannhold and van der Waterbeemd
2001]. Of course, there are no data for compounds not yet synthesised. There
is thus considerable interest in the development of methods for predicting
hydrophobicity values.

The first approach to estimating log P was based on an additive scheme
whereby the value for a compound with a substituent X is equal to the log P for the
parent compound (typically chosen to be the molecule with the substituent being
hydrogen) plus the appropriate substituent constant πX [Fujita et al. 1964]. The
substituent constants, πX , were calculated from experimental data as follows:

πX = log PX − log PH (3.1)

While the approach worked well within a congeneric series of compounds, the
π-values were found not to be additive across different series. For example, it is
inappropriate to use π-values derived from a benzene parent on electron-deficient
rings such as pyridine.
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Many other methods for estimating log P have been proposed. Some of these
are based on breaking the molecule into fragments. The partition coefficient for
the molecule then equals the sum of fragment values plus a series of “correction
factors” to account for interactions between the fragments such as intramolecular
hydrogen bonding. This leads to the following equation, first proposed by Rekker
[1977, 1992]:

log P =
n∑

i=1

ai fi +
m∑

j=1

b j Fj (3.2)

where there are ai fragments of type i with fi being the corresponding contribution
and b j occurrences of correction factor j with Fj being the correction factor. The
most widely used program of this type is the ClogP program, developed by Leo
and Hansch [1993]. This contains a relatively small set of fragment values obtained
from accurately measured experimental log P data for a small set of simple
molecules. Moreover, it uses a wholly automatic fragmentation scheme; molecules
are fragmented by identifying isolating carbons. These are carbon atoms that are
not doubly or triply bonded to a heteroatom. Such carbon atoms and their attached
hydrogens are considered hydrophobic fragments with the remaining groups of
atoms being the polar fragments.

Two ClogP calculations are illustrated in Figure 3-1 for benzyl bromide and o-
methyl acetanilide. The former contains one aliphatic isolating carbon six isolating
aromatic carbons and one bromide fragment. To these fragment contributions

CH2

Br
N
H

O

CH3

CH3

Bromide fragment  0.480
1 aliphatic isolating carbon  0.195
6 aromatic isolating carbons  0.780
7 hydrogens on isolating carbons 1.589
1 chain bond -0.120
---------------------------------------------------
Total  2.924

NH-amide fragment -1.510
2 aliphatic isolating carbons  0.390
6 aromatic isolating carbons  0.780
10 hydrogens on isolating carbons  2.270
1 chain bond -0.120
1 benzyl bond -0.150
ortho substituent -0.760
---------------------------------------------------
Total  0.900

Figure 3-1. ClogP calculations on benzyl bromide and o-methyl acetanilide. (Adapted from
Leach 2001.)
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are added values for the seven hydrogens on the isolating carbons together with
a contribution from one acyclic bond. o-methyl acetanilide contains an amide
fragment, two aliphatic isolating carbons and six isolating aromatic carbons. There
are also contributions from the hydrogen atoms, the acyclic bond, a benzyl bond
(to the o-methyl group) and a factor due to the presence of an ortho substituent.

The advantage of fragment-based approaches is that significant electronic
interactions can be taken into account; however, a potential disadvantage is that the
methods fail on molecules containing fragments for which values have not been
provided. This was a problem with early versions of ClogP where it was necessary
to determine missing values using experimental measurements. However, the most
recent version includes a method that estimates values for missing fragments [Leo
and Hoekman 2000].

Atom-based methods provide an alternative to the fragment-based approaches.
In these methods, log P is given by summing contributions from individual atoms
[Ghose and Crippen 1986; Wang et al. 1997; Ghose et al. 1998; Wildman and
Crippen 1999]:

log P =
∑

ni ai (3.3)

where ni is the number of atoms of atom type i and ai is the atomic contribution.
The atom contributions are determined from a regression analysis using a
training set of compounds for which experimental partition coefficients have
been determined. More details on regression methods are given in Chapter 4. In
some cases, the basic atomic contributions are moderated by correction factors
to account for particular classes of molecules. Atom-based methods do not suffer
from the problem of missing fragments, but a large number of atom types is needed
to describe a range of molecules. For example, in the Ghose and Crippen approach
carbon, hydrogen, oxygen, nitrogen, sulphur and halogens are classified into 110
atom types depending on their hybridisation state and the chemical nature of the
neighbouring atoms. Another drawback of atom-based methods is their failure to
deal with long-range interactions such as those seen in para-nitrophenol.

Methods for the estimation of various other physicochemical properties (e.g.
solubility) have been developed. Some of these models use fragment- or atom-
based approaches as described above; others are based on other calculated
descriptors. Some of these models will be described in Chapter 8 in our discussion
of ADMET properties (absorption, distribution, metabolism, excretion/elimination
and toxicity).
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2.3 Molar Refractivity

The molar refractivity is given by:

MR = n2 − 1
n2 + 2

MW
d

(3.4)

where n is the refractive index, d is the density, and MW is the molecular weight
[Hansch and Leo 1995; Livingstone 2000]. Since molecular weight divided by
density equals molar volume, molar refractivity is often used as a measure of the
steric bulk of a molecule. The refractive index term accounts for polarisability
of the molecule and does not vary much from one molecule to another. Molar
refractivity can be calculated using atomic contributions in a similar way to the
calculation of log P (the CMR program [Leo and Weininger 1995]).

2.4 Topological Indices

Topological indices are single-valued descriptors that can be calculated from
the 2D graph representation of molecules [Lowell et al. 2001; Randić 2001]. They
characterise structures according to their size, degree of branching and overall
shape.

An early example is the Wiener Index [Wiener 1947] which involves counting
the number of bonds between each pair of atoms and summing the distances, Di j ,
between all such pairs:

W = 1
2

N∑

i=1

N∑

j=1

Di j (3.5)

The best-known topological indices are the molecular connectivity indices first
described by Randić [1975] and subsequently developed by Kier and Hall [1986].
The branching index developed by Randić is calculated from the hydrogen-
suppressed graph representation of a molecule and is based on the degree δi of each
atom i . The degree equals the number of adjacent non-hydrogen atoms. A bond
connectivity value is calculated for each bond as the reciprocal of the square root
of the product of the degree of the two atoms in the bond. The branching index
equals the sum of the bond connectivities over all of the bonds in the molecule:

Branching Index =
∑

bonds

1√
δiδ j

(3.6)



58 An Introduction to Chemoinformatics

Kier and Hall generalised and extended the approach into a series of descriptors
that became known as the chi molecular connectivity indices. First, the simple δi
value is redefined in terms of the number of sigma electrons and the number of
hydrogen atoms associated with an atom. Valence δv

i values are also introduced;
these encode atomic and valence state electronic information through counts of
sigma, pi and lone pair electrons. Thus, the simple delta value for atom i , δi is
given by:

δi = σi − hi (3.7)

where σi is the number of sigma electrons for atom i and hi is the number of
hydrogen atoms bonded to atom i . The valence delta value for atom i , δv

i is
defined as:

δv
i = Z v

i − hi (3.8)

where Z v
i is the total number of valence electrons (sigma, pi and lone pair) for

atom i .

Table 3-1 shows the simple and valence delta values for various atoms. Thus,
the simple delta value differentiates –CH3 from –CH2–. Whilst –CH3 has the same
simple delta value as –NH2 it has a different valence delta value and so the two
atoms can be differentiated using this descriptor. For elements beyond fluorine in
the periodic table the valence delta expression is modified as follows:

δv
i = Z v

i − hi

Zi − Z v
i − 1

(3.9)

where Zi is the atomic number.

Table 3-1. Values of δι and δv
i for several common types of atom.

–CH3 –CH2– =CH2 –NH2

δi 1 2 1 1

δv
i 1 2 2 3
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The chi molecular connectivity indices are sequential indices that sum the atomic
delta values over bond paths of different lengths. Thus, the zeroth order chi index
(0χ) is a summation over all atoms in a molecule (i.e. paths of length zero):

0χ =
∑

atoms

1√
δi

; 0χv =
∑

atoms

1√
δv

i
(3.10)

The first-order chi index involves a summation over bonds. The first-order chi
index is thus the same as Randić’s branching index when simple delta values are
used:

1χ =
∑

bonds

1√
δiδ j

; 1χv =
∑

bonds

1√
δv

i δv
j

(3.11)

Higher-order chi indices involve summations over sequences of two, three, etc.
bonds.

To illustrate the differences between the various chi indices for a series of
related structures we show in Figure 3-2 the values of the 0χ , 1χ and 2χ indices
for the isomers of hexane.

Paths of 
length 2

Paths of 
length 3

Paths of 
length 4

Paths of 
length 5

0χ 1χ 2χ

4 3 2 1 4.828 2.914 1.707

5 4 1 0 4.992 2.808 1.922

5 3 2 0 4.992 2.770 2.183

6 4 0 0 5.155 2.643 2.488

7 3 0 0 5.207 2.561 2.914

Figure 3-2. Chi indices for the various isomers of hexane. (Redrawn from Leach 2001.)
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2.5 Kappa Shape Indices

The kappa shape indices [Hall and Kier 1991] are designed to characterise
aspects of molecular shape by comparing a molecule with the “extreme shapes”
that are possible for that number of atoms. As with the molecular connectivity
indices, there are shape indices of various order (first, second, etc.). The first-order
shape index involves a count over single bond fragments. The two extreme shapes
are the linear molecule and the completely connected graph where every atom is
connected to every other atom (Figure 3-3).

The first-order kappa index is defined as:

1κ = 21 Pmax
1 Pmin

(
1 P
)2 (3.12)

where 1 Pmax is the number of edges (or paths of length one) in the completely
connected graph (see Figure 3-3); 1 Pmin is the number of bonds in the linear
molecule; and 1 P is the number of bonds in the molecule for which the shape
index is being calculated. For a molecule containing A atoms, 1 Pmin equals (A−1)

and 1 Pmax is A(A−1)/2, since all pairs of atoms are connected. Thus 1κ becomes:

1κ = A (A − 1)2

(
1 P
)2 (3.13)

Figure 3-3. Extreme shapes used in the first- and second-order kappa indices for graphs
containing four, five and six atoms. In both these cases the linear molecule corresponds to
the minimum (middle column). The maximum for the first-order index corresponds to the
completely connected graph (left-hand column) and for the second-order index to the star shape
(right-hand column). (Redrawn from Leach 2001.)
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The second-order kappa index is determined by the count of two-bond paths,
written 2 P . The maximum value corresponds to a “star” shape in which all atoms
but one are adjacent to the central atom (2 Pmax = (A − 1)(A − 2)/2, Figure 3-3)
and the minimum value again corresponds to the linear molecule (2 Pmin = A−2).
The second-order shape index is then:

2κ = 22 Pmax
2 Pmin

(
2 P
)2 = (A − 1) (A − 2)2

(
2 P
)2 (3.14)

As with the molecular connectivity indices, higher-order shape indices have
also been defined. The kappa indices themselves do not include any information
about the identity of the atoms. This is achieved in the kappa–alpha indices where
the alpha value for an atom i is a measure of its size relative to some standard
(chosen to be the sp3-hybridised carbon):

αi = ri

rCsp3
− 1 (3.15)

Thus, the atom count A is adjusted for each non-sp3-hybridised carbon (either by
an increment or a decrement). The kappa–alpha indices are calculated as follows:

1κα = (A + α) (A + α − 1)2

(
1 P + α

)2 (3.16)

2κα = (A + α − 1) (A + α − 2)2

(
2 P + α

)2 (3.17)

where α is the sum of the αi ’s for all atoms in the molecule.

2.6 Electrotopological State Indices

The electrotopological state indices [Hall et al. 1991] are determined for each
atom (including hydrogen atoms, if so desired) rather than for whole molecules.
They depend on the intrinsic state of an atom, Ii , which for an atom i in the first
row of the periodic table is given by:

Ii =
(
δv

i + 1
)

δi
(3.18)
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The intrinsic state thus encodes electronic and topological characteristics of
atoms. The effects of interactions with the other atoms are incorporated by
determining the number of bonds between the atom i and each of the other atoms,
j . If this path length is ri j then a perturbation 	Ii j is defined as:

	Ii j =
∑

j

Ii − I j

r2
i j

(3.19)

The electrotopological state (E-state) for an atom is given by the sum
of 	Ii j and Ii . Atomic E-states can be combined into a whole-molecule
descriptor by calculating the mean-square value over all atoms. Vector or bitstring
representations can also be produced. There is a finite number of possible I values,
and so a bitstring representation can be obtained by setting the appropriate bit for
each of the different I values present in a molecule. Alternatively, a vector of real
numbers can be derived by taking the sum or the mean of each unique intrinsic
state.

Here, we have given details of some of the most widely used topological
indices; many other indices have also been described and are available in software
packages. For example, the widely used Molconn-Z program provides access to
several hundred different descriptors [Molconn-Z].

2.7 2D Fingerprints

Some of the most commonly used descriptors are the 2D fingerprints described
in Chapter 1. These descriptors were originally developed to provide a fast
screening step in substructure searching. They have also proved very useful for
similarity searching as will be described in Chapter 5. As explained in Chapter 1
there are two different types of 2D fingerprints: those based on the use of a
fragment dictionary, and those based on hashed methods.

An advantage of dictionary-based fingerprints is that each bit position often
corresponds to a specific substructural fragment. In some situations this can make
interpretation of the results of an analysis more straightforward (e.g. if it is
shown that specific bits are key to explaining the observed activity). This may
have implications for the fragment dictionary: fragments that occur infrequently
may be more likely to be useful than fragments which occur very frequently
[Hodes 1976]. Unfortunately, the optimum set of fragments is often data set
dependent. The hashed fingerprints are not dependent on a predefined dictionary
so any fragment that is present in a molecule will be encoded. However, it is not
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possible to map from a bit position back to a unique substructural fragment and
so the fingerprints are not directly interpretable. It is also important to realise
that 2D fingerprints were originally designed to improve the performance of
substructure searching algorithms rather than to be used as molecular descriptors.
There is therefore no inherent reason why these descriptors should “work” for
these alternative applications. The fact that they often do is probably due to the
fact that a molecule’s properties and biological activity often depends on features
such as those encoded by 2D fingerprints. There have also been some attempts
to redefine fragment dictionaries to make them more appropriate as molecular
descriptors [Durant et al. 2002].

2.8 Atom Pairs and Topological Torsions

Atom pair descriptors encode all pairs of atoms in a molecule together with the
length of the shortest bond-by-bond path between them [Carhart et al. 1985]. Each
atom is described by its elemental type together with the number of non-hydrogen
atoms to which it is bonded and its number of π-bonding electrons. An example of
a simple atom pair is CX2−(2)−CX2, representing the –CH2–CH2– sequence, Xn
indicating the presence of n non-hydrogen neighbouring atoms. A more complex
example is CX2–(3)–O·X1, representing a fragment such as A–CH2–A=O, A
being any non-hydrogen atom and the dot symbol (“·”) indicating the presence
of a bonding π-electron. Atom pairs encode more distant information than is the
case for the 2D fingerprints described above. The related topological torsions
encode sequences of four connected atoms together with their types, number of
non-hydrogen connections and number of π-electrons [Nilakantan et al. 1987].
It is straightforward to construct a bitstring descriptor in which each position
represents the presence or absence of a particular atom pair or topological torsion
in the molecule.

Kearsley et al. [1996] subsequently modified the atom pair definition in
recognition of the fact that the properties of atoms are often more important
than the specific element type. In their modified approach atoms are identified
as belonging to one of seven binding property classes: cations, anions, neutral
hydrogen bond donors and acceptors, atoms which are both donor and acceptor,
hydrophobic atoms and all others.

Other descriptors based on similar ideas include, for example, the CATS
(Chemically Advanced Template Search) descriptors [Schneider et al. 1999].
The Similog keys extend the approach to triplets of atoms and their topological
distances with each atom being described by the presence or absence of the
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following four properties: donor, acceptor, bulkiness and electropositivity (known
as the DABE atom typing scheme) [Schuffenhauer et al. 2003].

2.9 Extended Connectivity Fingerprints

Circular substructures were first developed for substructure searching in
the DARC system where they were called FRELs (Fragment Reduced to an
Environment that is Limited) [Attias 1983]. In FRELs the environment of an
atom is described in terms of its neighbouring atoms up to a radius of two
bonds. Similar descriptors called Extended Connectivity Fingerprints (ECFPs)
and Functional Connectivity Fingerprints (FCFPs) [SciTegic] have been shown
to be effective in similarity searching applications [Hert et al. 2004b]. The former
are based on element types with the latter being based on generalised types. The
extended connectivity of an atom is calculated using a modified version of the
Morgan algorithm [Morgan 1965] and the degree of discrimination can be varied
by extending the environment of the atom to include higher-order neighbours.
An atom code is combined with the codes of its neighbours to the required level
of description. For example, ECFP2 considers the first-order neighbours; ECFP4
extends to the third-order neighbours, etc.

2.10 BCUT Descriptors

BCUT descriptors were designed to encode atomic properties relevant to
intermolecular interactions. They have been used extensively in diversity analyses.
BCUT values are based on an earlier descriptor developed by Burden [1989] that
is calculated from a matrix representation of a molecule’s connection table. The
atomic numbers of the non-hydrogen atoms are placed on the diagonal of the
matrix. The off-diagonals are assigned the value 0.1 times the bond type if
the atoms are bonded, and 0.001 if the atoms are not bonded. The two lowest
eigenvalues (see Appendix 1) of this matrix are then calculated and combined
to give a single index. The method was extended by Pearlman to generate a
family of descriptors called the BCUT descriptors that could be used to define
a low-dimensional chemistry space [Pearlman and Smith 1998]. Rather than using
atomic number, the diagonal elements in the BCUT matrices encode atomic
charge, atomic polarisability and atomic hydrogen bonding ability. The highest
and lowest eigenvalues are then extracted for use as descriptors. The three types
of matrix described above would thus give rise to six descriptors that describe a
6D space. It is also possible to derive BCUT values based on 3D properties. Here,
the same atomic properties are encoded on the diagonals of the matrices with the
off-diagonals encoding interatomic distances.
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3. DESCRIPTORS BASED ON 3D REPRESENTATIONS

Given that molecular recognition depends on 3D structure, there has been
considerable interest in the use of 3D descriptors. Such descriptors require the
generation of 3D conformations; this can be computationally time-consuming
when dealing with large data sets. Furthermore, a single low-energy conformation
is usually insufficient and so conformational flexibility should be taken into
account. It is usual to combine the descriptors for all of the conformations
(sometimes weighted by the relative population of each conformation) to generate
an ensemble descriptor that encodes the accessible conformational space of the
molecule.

3.1 3D Fragment Screens

As described in the previous chapter, 3D screens were originally designed for
use in 3D substructure searching. However, they can also be used as descriptors
for applications such as library design and diversity analysis. These screens encode
spatial relationships (e.g. distances and angles) between the different features of a
molecule such as atoms, ring centroids and planes. Distance ranges for each pair
of features are divided into a series of bins by specifying a bin width. For example,
a distance range of 0–20 Å between two nitrogen atoms might be represented
by ten bins, each of width 2 Å, covering the ranges 0–2.0 Å, 2.0–4.0 Å and so
on. Alternatively, a non-uniform binning scheme may be used to provide a more
even population distribution, as described in Chapter 2. Valence angle descriptors
consist of three atoms, ABC, together with the angle between them (i.e. the angle
between AB and AC). The atoms may or may not be bonded. Torsion angle
descriptors consist of four atoms, ABCD, where BC is the torsion bond, and the
torsion angle is the angle formed between ABC and BCD. As with valence angles,
the atoms may be bonded or non-bonded. The different types of screens can be
combined into a bitstring of length equal to the total number of bins over all feature
types. Another distance-based descriptor uses the distances between triplets of
atoms. Schemes for converting the three interatomic distances into a single value
have also been devised [Bemis and Kuntz 1992; Nilakantan et al. 1993].

3.2 Pharmacophore Keys

Pharmacophore keys are an extension of the 3D screens developed for 3D
pharmacophore searching [Pickett et al. 1996]. They are based on pharmacophoric
features, that is, atoms or substructures that are thought to have relevance
for receptor binding. Pharmacophoric features typically include hydrogen
bond donors, hydrogen bond acceptors, charged centres, aromatic ring centres
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Figure 3-4. The generation of 3-point pharmacophore keys, illustrated using benperidol.
Two different conformations are shown, together with two different combinations of three
pharmacophore points. (Adapted from Leach 2001.)

and hydrophobic centres. Pharmacophore keys are most frequently based on
combinations of either three or four pharmacophoric features. For example, a
particular conformation of a molecule may contain a hydrogen bond acceptor
6 Å from an aromatic ring centroid and 5 Å from a basic nitrogen with the third
distance being 7 Å. This 3-point pharmacophore is characterised by the types of
pharmacophore features involved and the distances between them (Figure 3-4). In
order to construct the binary pharmacophore key, all possible combinations of 3-
point pharmacophores are enumerated together with all possible (binned) distances
between the features. Each bit in the pharmacophore key bitstring thus represents
one possible 3-point pharmacophore. The pharmacophore key for the molecule
is then derived by setting the relevant bits in the key to “1” to indicate the 3-
point pharmacophores it contains, considering all possible conformations of the
molecule (Figure 3-4).

The first approach to the construction of pharmacophore keys used in the
Chem-Diverse program [Davies 1996] was based on seven feature types and
32 distance ranges: <1.7 Å; 1.7–3.0 in 0.1 Å increments; 3.0–7.0 Å in 0.5 Å
increments; 7–15 Å in 1 Å increments and >15 Å. There are 84 ways to select three
features from seven and when these are combined with the 32 distance bins over 2
million combinations result. However, many of these pharmacophores are invalid
since they violate the triangle inequality rule (see Chapter 2); moreover, some of
the combinations are identical due to symmetry. When these are removed the total
number of distinct 3-point pharmacophores reduces to approximately 890,000. 4-
point pharmacophores contain more information (e.g. four points are required to
differentiate stereoisomers) and can be more discriminating than the 3-point keys
[Mason et al. 1999]. All combinations of four features together with 15 distance
ranges give rise to over 350 million 4-point pharmacophores with valid geometry.
Another extension is to combine information about the volume occupied by each
conformation with the pharmacophoric features [Srinivasan et al. 2002].
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In the Pharmacophore-Derived Queries (PDQ) method [Pickett et al. 1996],
a much smaller 3-point pharmacophore key is generated based on six features
(donor, acceptor, acid, base, aromatic centre and hydrophobe) and six distance bins
(with each bin covering a distance range of 2.5–5 Å). This gives a total of 5,916
potential pharmacophores. The number of times each pharmacophore is matched
is also recorded, so providing information beyond the simple binary information
encoded in most bitstrings.

3.3 Other 3D Descriptors

A variety of other 3D descriptors have been developed, many of which
have 2D counterparts. For example, 3D topographical indices can be calculated
from the distance matrix of a molecule [Randić and Razinger 1995];
these are analogous to the topological indices which are generated from a
2D connection table. Similarly, geometric atom pairs have been developed
as an extension of atom pair descriptors [Sheridan et al. 1996]. Other
descriptors are based upon time-consuming calculations that are not generally
applicable to large data sets. For example, it is possible to derive properties
such as dipole moments and HUMO and LUMO energies from quantum
mechanical calculations [Leach 2001]. 3D properties such as the electrostatic
potential are used in QSAR methods, such as Comparative Molecular Field
Analysis (CoMFA), described in Chapter 4. Other techniques also use such
descriptions, but rely upon the relative alignment of molecules; these are
considered in Chapter 5. Finally, several descriptors have found particular
use in the prediction of ADMET properties; these will be discussed in
Chapter 8.

4. DATA VERIFICATION AND MANIPULATION

Having calculated a series of descriptors for a set of molecules it is often
advisable to examine their characteristics prior to using them in an analysis. In
particular it can be important to evaluate the distribution of values for a given
descriptor and to check for correlations between different descriptors which could
lead to over-representation of certain information. Manipulation of the data may
also be required. This could involve a simple technique such as scaling to ensure
that each descriptor contributes equally to the analysis or it may involve a more
complex technique such as principal components analysis (PCA) that results in a
new set of descriptors with more desirable characteristics.



68 An Introduction to Chemoinformatics

4.1 Data Spread and Distribution

One of the most straightforward verification procedures that should be
performed for any descriptor is to examine the spread of values for the data set.
If the values show no variation then there is nothing to be gained from inclusion
of the descriptor. In some cases it may be important that the values of a descriptor
follow a particular distribution, often the normal distribution.

One quantity that can be used to assess the spread of a descriptor is the
coefficient of variation. This is equal to the standard deviation (σ ) divided by the
mean (〈x〉); these two quantities are given by the following equations:

〈x〉 = 1
N

N∑

i=1

xi (3.20)

σ =
√√√√ 1

N

N∑

i=1

(xi − 〈x〉)2 ≡

√√√√√ 1
N

⎡

⎣
N∑

i=1

(
x2

i
)− 1

N

( N∑

i=1

xi

)2⎤

⎦ (3.21)

where there are N data points and xi is the value of descriptor x for data point i .
The larger the coefficient of variation the better the spread of values.

4.2 Scaling

Descriptors often have substantially different numerical ranges and it is
important that they are scaled appropriately so that each descriptor has an equal
chance of contributing to the overall analysis. Otherwise, a descriptor that has
a large range of values will overwhelm any variation seen in a descriptor that has a
small range of values and will bias the results. Scaling is also often referred to as
standardisation. There are many ways to scale data. In unit variance scaling (also
known as auto-scaling), each descriptor value is divided by the standard deviation
for that descriptor across all observations (molecules). Each scaled descriptor then
has variance of one.

Unit variance scaling is usually combined with mean centring in which the
average value of a descriptor is subtracted from each individual value. In this way
all descriptors are centred on zero and have a standard deviation of one:

x ′
i = xi − 〈x〉

σ
(3.22)



Molecular Descriptors 69

where x ′
i is the new, transformed value of the original xi . Range scaling uses a

related expression in which the denominator equals the difference between the
maximum and minimum values. This gives a set of new values that vary between
−0.5 and +0.5.

4.3 Correlations

Correlations between the descriptors should also be checked as a matter
of routine. If highly correlated descriptors are used in combination then the
information that they characterise may be over-represented. Many correlations can
be identified from simple scatterplots of pairs of descriptor values; ideally, the
points will be distributed with no discernible pattern as illustrated schematically
in Figure 3-5.

When many descriptors need to be considered then it is usually more
convenient to compute a pairwise correlation matrix. This quantifies the degree
of correlation between all pairs of descriptors. Each entry (i, j) in the correlation
matrix is the correlation coefficient between the descriptors xi and x j . The
correlation coefficient, r , is given by:

r =

N∑
k=1

[(
xi,k − 〈xi 〉

) (
x j,k − 〈x j

〉)]

√
N∑

k=1

(
xi,k − 〈xi 〉

)2 N∑
k=1

(
x j,k − 〈x j

〉)2
(3.23)

The values of the correlation coefficient range from −1.0 to +1.0. A value
of +1.0 indicates a perfect positive correlation; a plot of xi versus x j would

Figure 3-5. A pair of descriptors with no correlation will have points in all four quadrants of the
scatter plot and with no obvious pattern or correlation.
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Table 3-2. Descriptors of amino acids and amino acid side chains [El Tayar et al.
1992]. LCE and LCF are two lipophilicity constants of amino acid side chains, FET
is the free energy of transfer of amino acid side chains from organic solvent into
water, POL is a polarity parameter, VOL is the molecular volume of the amino acid
and ASA is the solvent-accessible surface area of the amino acid.

Name LCE LCF FET POL VOL ASA

Ala 0.23 0.31 −0.55 −0.02 82.2 254.2
Arg −0.79 −1.01 2.00 −2.56 163.0 363.4
Asn −0.48 −0.60 0.51 −1.24 112.3 303.6
Asp −0.61 −0.77 1.20 −1.08 103.7 287.9
Cys 0.45 1.54 −1.40 −0.11 99.1 282.9
Gln −0.11 −0.22 0.29 −1.19 127.5 335.0
Glu −0.51 −0.64 0.76 −1.43 120.5 311.6
Gly 0.00 0.00 0.00 0.03 65.0 224.9
His 0.15 0.13 −0.25 −1.06 140.6 337.2
Ile 1.2 1.80 −2.10 0.04 131.7 322.6
Leu 1.28 1.70 −2.00 0.12 131.5 324.0
Lys −0.77 −0.99 0.78 −2.26 144.3 336.6
Met 0.90 1.23 −1.60 −0.33 132.3 336.3
Phe 1.56 1.79 −2.60 −0.05 155.8 366.1
Pro 0.38 0.49 −1.50 −0.31 106.7 288.5
Ser 0.00 −0.04 0.09 −0.40 88.5 266.7
Thr 0.17 0.26 −0.58 −0.53 105.3 283.9
Trp 1.85 2.25 −2.70 −0.31 185.9 401.8
Tyr 0.89 0.96 −1.70 −0.84 162.7 377.8
Val 0.71 1.22 −1.60 −0.13 115.6 295.1

Table 3-3. Correlation matrix for amino acid data.

Name LCE LCF FET POL VOL ASA

LCE 1.00 0.97 −0.93 0.74 0.37 0.46
LCF 0.97 1.00 −0.92 0.77 0.28 0.38
FET −0.93 −0.92 1.00 −0.74 −0.26 −0.28
POL 0.74 0.77 −0.74 1.00 −0.35 −0.18
VOL 0.37 0.28 −0.26 −0.35 1.00 0.89
ASA 0.46 0.38 −0.28 −0.18 0.89 1.00

give a straight line with a positive slope. A value of −1.0 indicates a perfect
negative correlation with the straight line having a negative slope. A value of zero
indicates that there is no relationship between the variables. By way of illustration
consider the set of amino acid descriptors shown in Table 3-2 [El Tayar et al.
1992]. The correlation matrix is given in Table 3-3; as can be seen there is a high
degree of positive correlation between the two lipophilicity constants and between
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the volume and the solvent-accessible surface area. There is a strong negative
correlation between the polarity parameter and the two lipophilicity parameters.

4.4 Reducing the Dimensionality of a Data Set: Principal
Components Analysis

The dimensionality of a data set is the number of variables that are used to
describe each object. Principal Components Analysis (PCA) is a commonly used
method for reducing the dimensionality of a data set when there are significant
correlations between some or all of the descriptors. PCA provides a new set
of variables that have some special properties; it is often found that much of
the variation in the data set can be explained by a small number of these
principal components. The principal components are also much more convenient
for graphical data display and analysis.

A simple 2D example will illustrate the concept of principal components.
Consider the scatterplot shown in Figure 3-6. As can be seen, there is a high
correlation between the x1 and the x2 values. Most of this variation can however
be explained by introducing a single variable that is a linear combination of these
(i.e. z = x1 − x2). The new variable (z) is referred to as a principal component.

In the general case of a multidimensional data set each of the principal
components is a linear combination of the original variables or descriptors:

PC1 = c1,1x1 + c1,2x2 + · · · c1,px p (3.24)

PC2 = c2,1x1 + c2,2x2 + · · · c2,px p (3.25)

PCi = ci,1x1 + ci,2x2 + · · · ci,px p =
p∑

j=1

ci, j x j (3.26)

z = x1-x2

x2

x1

Figure 3-6. Simple illustration of principal components analysis.
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where PCi is the i th principal component and ci, j is the coefficient of the descriptor
x j , p being the number of descriptors. The first principal component maximises
the variance in the data (i.e. the data have their greatest “spread” along this first
principal component, as shown in Figure 3-6). The second principal component
accounts for the maximum variance in the data that is not already explained
by the first principal component, and so on for the third, fourth, etc. principal
components. Another property of the principal components is that they are all
orthogonal to each other. Thus in the simple 2D example shown in Figure 3-6 the
second principal component would define an axis at right angles to the first.

The number of principal components that can be calculated is equal to the
smaller of the number of data points (molecules) or the number of variables
(descriptors) in the original data set. It is usually necessary to include all of the
principal components to explain all of the variance in the data. However, in many
data sets only a small number of principal components is required to explain a
significant proportion of the variation, due to correlations between the original
variables.

The principal components are calculated from the variance–covariance matrix;
if A is the matrix with n rows (corresponding to n molecules) and p columns
(for the p descriptors) then the variance–covariance matrix is the n × n matrix
AAT. The eigenvectors of this matrix are the coefficients ci, j of the principal
components (a summary of matrices, eigenvalues and eigenvectors is provided
in Appendix 1). The first principal component (the one that explains the largest
amount of the variance) corresponds to the largest eigenvalue; the second principal
component to the second largest eigenvalue and so on. The eigenvalues indicate the
proportion of the variance that is explained by each of the principal components.
If the eigenvalues are labelled λi then the first m principal components account for
the following fraction of the total variation in the data set:

f =

m∑
i=1

λi

∑
λi

(3.27)

If, as is usual, each of the p variables is subjected to auto-scaling before
extracting the principal components, then each variable will contribute a variance
of one to the total data set, which will thus have a total variance of p. Any principal
component which has an eigenvalue of less than one thus explains less of the
variance than one of the original variables. For this reason it is common to consider
as meaningful only those principal components which have eigenvalues greater
than one. This is a widely applied rule-of-thumb when interpreting a PCA and
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when using the principal components in subsequent modelling, such as principal
components regression (PCR) (to be discussed in Chapter 4).

By way of example, consider again the data in Table 3-2. As we observed
some of these descriptors are highly correlated. A PCA of this data provides the
following results:

PC1 = 0.514 LCE + 0.506 LCF − 0.489 FET + 0.371 POL

+ 0.202 VOL + 0.248 ASA λ1 = 74.84 v = 62% (3.28)

PC2 = −0.013 LCE − 0.076 LCF + 0.108 FET − 0.477 POL

+ 0.638 VOL + 0.590 ASA λ2 = 40.06 v = 33% (3.29)

PC3 = 0.081 LCE + 0.074 LCF + 0.597 FET + 0.373 POL

− 0.365 VOL + 0.600 ASA λ3 = 3.47 v = 2% (3.30)

where v is the proportion of variance accounted for. Thus the first two principal
components taken together account for 95% of the variance. The results of this
PCA can be displayed graphically. Two of the most common ways are via
loadings plots and scores plots. The loadings plot indicates the coefficients for
each of the descriptors in the various principal components. The loadings plot
for the first two principal components of the amino acid data set is shown in
Figure 3-7. This shows the relative contribution of each descriptor to the different
principal components. As can be seen the first principal component has reasonably
significant contributions from all six descriptors whereas the second principal
component is mostly composed of the volume, accessible surface area and polarity
terms with little contribution from the lipophilicity and free energy of transfer
terms. Moreover, the close proximity of the volume and accessible surface area
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Figure 3-7. Loadings plot for the first two principal components of the amino acid data.
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Figure 3-8. Scores plot showing the distribution of amino acids in the first two principal
components.

terms and of the two lipophilicity constants reflects the high degree of correlation
between these two pairs of descriptors.

The scores plot in Figure 3-8 shows how the various amino acids relate to each
other in the space of the first two principal components. This plot indicates the
underlying structure of the data; in this case it can be seen that similar amino
acids are indeed grouped roughly together, with the charged and polar amino
acids in one region (e.g. Arg, Lys, Glu, Asp), the small hydrophobic amino acids
forming another group (e.g. Ala, Pro, Val) and the aromatic amino acids in a third
region(e.g. Phe, Trp).

5. SUMMARY

In this chapter, we have considered descriptors that are commonly used when
handling the large data sets often encountered in chemoinformatics. All of the
following chapters in this book describe techniques that make use of these
descriptors, such as the QSAR and data analysis methods of Chapters 4 and 7
respectively, the similarity techniques of Chapter 5, the methods for selecting
diverse compound sets of Chapter 6 and the library design techniques of Chapter 9.
Descriptors range from those that are very simple to calculate to those that are
rather complex. The values of some descriptors such as the molecular weight
are shared by many molecules; others are more discriminatory (e.g. a 4-point
pharmacophore key is able to distinguish stereoisomers). Some descriptors such
as the partition coefficient have an experimental counterpart or may be easily
comprehended by a non-expert; others are purely computational, with the values
for new molecules being rather difficult to predict. As we shall see in subsequent
chapters, selection of the appropriate set of descriptors is often critical to success.



Chapter 4

COMPUTATIONAL MODELS

1. INTRODUCTION

Most molecular discoveries today are the result of an iterative, three-phase
cycle of design, synthesis and test. Analysis of the results from one iteration
provides information and knowledge that enables the next cycle to be initiated
and further improvements to be achieved. A common feature of this analysis stage
is the construction of some form of model which enables the observed activity
or properties to be related to the molecular structure. Many types of model are
possible, with mathematical and statistical models being particularly common.
Such models are often referred to as Quantitative Structure-Activity Relationships
(QSARs) or Quantitative Structure–Property Relationships (QSPRs).

The focus in this chapter is on methods that can be applied to relatively
small data sets. The analysis of large data sets, as might be obtained from high-
throughput screening (HTS), is considered in Chapter 7 (note that many of the
techniques discussed there can also be applied to small data sets). We will consider
the use of simple and multiple linear regression for the derivation of QSAR
models, including a discussion of the techniques that can be used to confirm the
validity of such models. Also important is the design of a QSAR “experiment”
including the construction of the data set and the descriptors employed. Finally,
the techniques of PCR and partial least squares (PLS) are described.

2. HISTORICAL OVERVIEW

It is generally accepted that Hansch was the first to use QSARs to explain the
biological activity of series of structurally related molecules [Hansch and Fujita
1964; Fujita et al. 1964; Hansch 1969]. Hansch pioneered the use of descriptors
related to a molecule’s electronic characteristics and to its hydrophobicity. This led
him to propose that biological activity could be related to the molecular structure
via equations of the following form:

log (1/C) = k1 log P + k2σ + k3 (4.1)

75
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where C is the concentration of compound required to produce a standard response
in a given time, log P is the logarithm of the molecule’s partition coefficient
between 1-octanol and water and σ is the appropriate Hammett substitution
parameter. This formalism expresses both sides of the equation in terms of free
energy. An alternative formulation of this equation uses the parameter π , which as
we discussed in Chapter 3 is the difference between the log P for the compound
and the analogous hydrogen-substituted compound:

log (1/C) = k1π + k2σ + k3; π = log PX − log PH (4.2)

Another important breakthrough was Hansch’s proposal that the activity was
parabolically dependent on log P :

log (1/C) = −k1 (log P)2 + k2 (log P) + k3σ + k4 (4.3)

Hansch’s rationale for suggesting the parabolic dependence on log P was that
the drug’s hydrophobicity should not be so low that the drug did not partition into
the cell membrane nor so high that once in the membrane it simply remained there.
An early example of such a non-linear relationship between a biological response
and the partition coefficient is the following equation derived for the narcotic effect
of thirteen barbiturates on mice [Hansch et al. 1968]:

log (1/C) = −0.44 (log P)2 + 1.58 (log P) + 1.93 (4.4)

The electronic characteristics of a molecule are also important in determining
its activity against the target; the Hammett parameters provided a concise and
convenient way to quantify these. Hammett and others had shown that for related
compounds reaction rates (e.g. for the hydrolysis of benzoate esters) and positions
of equilibrium (e.g. the ionisation constants of substituted benzoic acids) could be
quantified using equations of the following form [Hammett 1970]:

log (k/k0) = ρσ (4.5)

log (K/K0) = ρσ (4.6)

These equations express the rate (k) or equilibrium (K ) constant for a
particular substituent relative to that for a reference compound (indicated using
the subscript 0 and typically that for which the substituent is hydrogen). The
substituent parameter σ is determined by the nature of the substituent and whether
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it is meta or para to the carboxylic acid or ester group on the aromatic ring. The
reaction constant ρ is fixed for a particular process with the standard reaction being
the dissociation of benzoic acids (ρ = 1). There have been many extensions to
Hammett’s original formulation, such as the work of Taft who showed how to
incorporate steric effects. Another key development of particular relevance to the
QSAR community was the suggestion by Swain and Lupton that σ values could
be written as a weighted linear combination of two components: a field component
(F) and a resonance component (R) [Swain and Lupton 1968; Swain et al. 1983].
Many phenomena had been found to follow a Hammett-style equation but were not
well correlated using Hammett’s original substitution values. The Swain–Lupton
proposal enabled many of these substitution constant sets to be rationalised.

3. DERIVING A QSAR EQUATION: SIMPLE
AND MULTIPLE LINEAR REGRESSION

Various mathematical methods have been used to derive QSAR models but
perhaps the most widely used technique is linear regression. The simplest type of
linear regression equation has the following form:

y = mx + c (4.7)

In this equation, y is called the dependent variable with x being the
independent variable. In QSAR or QSPR y would be the property that one was
trying to model (such as the biological activity) and x would be a molecular
descriptor such as log P or a substituent constant (in the rest of this chapter
“variable” and “descriptor” are used interchangeably to refer to the independent
variable). The aim of linear regression is to find values for the coefficient m and the
constant c that minimise the sum of the differences between the values predicted
by the equation and the actual observations. This is illustrated graphically in Figure
4-1. The values of m and c are given by the following equations (in which N is the
number of data values):

m =

N∑
i=1

(xi − 〈x〉) (yi − 〈y〉)
N∑

i=1
(xi − 〈x〉)2

(4.8)

c = 〈y〉 − m 〈x〉 (4.9)

The line described by the regression equation passes through the point
(〈x〉 , 〈y〉) where 〈x〉 and 〈y〉 are the means of the independent and dependent
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y

x

Figure 4-1. The aim of linear regression is to minimise the sum of the differences between the
actual observations and those predicted from the regression equation (represented by the vertical
lines from each point to the best-fit line).

variables respectively:

〈x〉 = 1
N

N∑

i=1

xi (4.10)

〈y〉 = 1
N

N∑

i=1

yi (4.11)

It is common for there to be more than one independent variable, in which
case the method is referred to as multiple linear regression (the term simple linear
regression applies where there is just one independent variable). The formulae for
the coefficients in multiple linear regression are not so simple as Equations 4.8 and
4.9, but they are easily calculated using a standard statistical package.

3.1 The Squared Correlation Coefficient, R2

The “quality” of a simple or multiple linear regression can be assessed in a
number of ways. The most common of these is to calculate the squared correlation
coefficient, or R2 value (also written r2). This has a value between zero and one
and indicates the proportion of the variation in the dependent variable that is
explained by the regression equation. Suppose ycalc,i are the values obtained by
feeding the relevant independent variables into the regression equation and yi are
the corresponding experimental observations. The following quantities can then
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be calculated:

Total Sum of Squares, TSS =
N∑

i=1

(yi − 〈y〉)2 (4.12)

Explained Sum of Squares, ESS =
N∑

i=1

(
ycalc,i − 〈y〉)2 (4.13)

Residual Sum of Squares, RSS =
N∑

i=1

(
yi − ycalc,i

)2 (4.14)

Thus,

TSS = ESS + RSS (4.15)

R2 is given by the following relationships:

R2 = ESS
TSS

≡ TSS − RSS
TSS

≡ 1 − RSS
TSS

(4.16)

An R2 of zero corresponds to a situation in which none of the variation in the
observations is explained by the variation in the independent variables whereas a
value of one corresponds to a perfect explanation. The R2 statistic is very useful
but taken in isolation it can be misleading. By way of illustration, Figure 4-2 shows
five data sets for which the value of R2 is approximately the same (0.7). With one
exception (the data set shown top left) the single “best fit” straight line obtained
from regression is clearly inappropriate, due to the presence of outliers or some
other trend within the data.

3.2 Cross-Validation

Cross-validation methods provide a way to try and overcome some of the
problems inherent in the use of the R2 value alone. Cross-validation involves the
removal of some of the values from the data set, the derivation of a QSAR model
using the remaining data, and then the application of this model to predict the
values of the data that have been removed. The simplest form of cross-validation
is the leave-one-out approach (LOO), where just a single data value is removed.
Repeating this process for every value in the data set leads to a cross-validated
R2 (more commonly written Q2 or q2). The cross-validated R2 value is normally
lower than the simple R2 but is a true guide to the predictive ability of the equation.
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Figure 4-2. A variety of data sets which all have approximately the same R2 value (0.7).
(Adapted from [Livingstone 1995].)

Thus R2 measures goodness-of-fit whereas Q2 measures goodness-of-prediction.
The simple LOO approach is widely considered to be inadequate and has largely
been superseded by a more robust variant, in which the data set is divided into
four or five groups, each of which is left out in turn to generate the Q2 value. By
repeating this procedure a large number of times (of the order of 100), selecting
different groupings at random each time, a mean Q2 can be derived. For a well-
behaved system there should not be much variation in the equations obtained
during such a procedure, nor should the R2 value calculated using the entire data
set be significantly larger than the mean Q2. If there is a large discrepancy then
it is likely that the data has been over-fit and the predictive ability of the equation
will be suspect. A more rigorous procedure is to use an external set of molecules
that is not used to build the model [Golbraikh and Tropsha 2002]. In some cases
it may be possible to validate a model using temporal sets that contain molecules
synthesised after the model is constructed. The Predictive Residual Sum of Squares
(PRESS) is another measure of predictive ability. This is analogous to the RSS but
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rather than using values ycalc,i calculated from the model PRESS uses predicted
values ypred,i ; these are values for data not used to derive the model. Q2 is related
to PRESS as follows:

Q2 = 1 − PRESS
N∑

i=1
(yi − 〈y〉)2

; PRESS =
N∑

i=1

(
yi − ypred,i

)2 (4.17)

The value of 〈y〉 in Equation 4.17 should strictly be calculated as the mean of the
values for the appropriate cross-validation group rather than the mean for the entire
data set, though the latter value is often used for convenience.

3.3 Other Measures of a Regression Equation

The standard error of prediction (s) is another commonly reported parameter;
it indicates how well the regression function predicts the observed data and is
given by:

s =
√

RSS
N − p − 1

(4.18)

where p is the number of independent variables in the equation.

Two additional quantities used to assess a linear regression are the F statistic
and the t statistic. F equals the ESS divided by the Residual Mean Square, as given
by the following equation:

F = ESS
p

N − p − 1
RSS

(4.19)

The form of this equation reflects the number of degrees of freedom associated
with each parameter. The ESS is associated with p degrees of freedom and the RSS
with N − p − 1 degrees of freedom. Their respective means are therefore given
by dividing by these quantities. A perhaps more easily comprehended illustration
is the number of degrees of freedom associated with the TSS. This is N − 1
(rather than N ) because the fitted line in a linear regression always passes through
the mean of the dependent and independent variables (〈x〉, 〈y〉) so reducing the
number of degrees of freedom by one.
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The calculated value for F is compared with values in statistical tables. These
tables give values of F for different confidence levels. If the computed value is
greater than the tabulated value then the equation is said to be significant at that
particular confidence level. Higher values of F correspond to higher significance
levels (i.e. greater confidence). For a given confidence level the threshold value
of F falls as the number of independent variables decreases and/or the number
of data points increases, consistent with the desire to describe as large a number
of data points with as few independent variables as possible. The statistical tables
provide values of F as a function of p and (N − p − 1).

The t statistic indicates the significance of the individual terms in the linear
regression equation. If ki is the coefficient in the regression equation associated
with a particular variable xi then the t statistic is given by:

t =
∣∣∣∣

ki

s (ki )

∣∣∣∣ ; s (ki ) =
√√√√√√

RSS
N − p − 1

· 1
N∑

j=1

(
xi, j − 〈xi 〉

)2
(4.20)

where s(ki ) is known as the standard error of the coefficient. As with the F
statistic, values of t computed from Equation 4.20 can be compared with values
listed in statistical tables at various confidence levels; if the computed value is
greater than the value in the table then the coefficient is considered significant.

4. DESIGNING A QSAR “EXPERIMENT”

In order to derive a useful and predictive QSAR model it is necessary to design
the “experiment” as carefully as one might design an experiment in the laboratory.
The goal is generally to derive as parsimonious a model as possible; one that uses
the smallest number of independent variables to explain as much data as possible.
The following section provides some guidelines that may help avoid some of the
common pitfalls.

The first guideline concerns the size of the data set. A general rule-of-thumb is
that there should be at least five compounds for each descriptor that is included in
the regression analysis. Second, simple verification checks should be performed
on any descriptors proposed for inclusion in the analysis. These checks were
described in Chapter 3; for example, if the values of a given descriptor show no
variation then nothing is gained by its inclusion. The descriptor values should also
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in general have a good “spread”, with no extreme outliers. It may be appropriate
to scale the descriptors.

Correlations between the descriptors should also be checked, as described in
Chapter 3. If pairs of correlated descriptors exist it is necessary to decide which
to remove. One approach is to remove the descriptors that have the highest
correlations with other descriptors. Conversely, one may choose to keep the
descriptors that have the highest correlations in order to reduce the size of the
data set as much as possible. Should two correlated descriptors each be correlated
with the same number of other descriptors then the CORCHOP procedure removes
that whose distribution deviates most from normal [Livingstone and Rahr 1989].
Alternatively one can avoid the problem altogether and use a data reduction
technique such as PCA (see Chapter 3) to derive a new set of variables that are
by definition uncorrelated.

4.1 Selecting the Descriptors to Include

Having identified a set of suitably distributed, non-correlated descriptors, it
is necessary to decide which should be incorporated into the QSAR equation.
Knowledge of the problem domain may suggest a subset of descriptors to consider.
An alternative is to use an automated procedure. Two such procedures are
forward-stepping regression and backward-stepping regression. Forward-stepping
regression initially generates an equation containing just one variable (typically
chosen to be the variable that contributes the most to the model, as might be
assessed using the t statistic). Second, third and subsequent terms are added using
the same criterion. Backward-stepping regression starts with an equation involving
all of the descriptors which are then removed in turn (e.g. starting with the variable
with the smallest t statistic). Both procedures aim to identify the equation that best
fits the data, as might be assessed using the F statistic or with cross-validation.
An extension of this approach is the use of GAs to generate a population of
linear regression QSAR equations, each with different combinations of descriptors
[Rogers and Hopfinger 1994]. The output from this procedure is a family of models
from which one can select the highest scoring model or which can be analysed
further to determine the most commonly occurring descriptors.

4.2 Experimental Design

Planning a QSAR “experiment” can extend even to a consideration of the
synthesis of the compounds that will be used to build the model. Careful design
may enable an effective QSAR to be determined from a minimal number of



84 An Introduction to Chemoinformatics

molecules and so may reduce the synthetic effort. For example, if it is believed
that a particular descriptor is important in explaining the activity then it is clearly
important to ensure that this property has a good spread of values in the set
of molecules. Experimental design techniques can help to extract the maximum
information from the smallest number of molecules. One such technique is
factorial design, which is most conveniently illustrated with a simple example.
Suppose there are two variables that might affect the outcome of an experiment.
For example, the outcome (formally known as the response) may be the yield of
a chemical synthesis and the variables (or factors) might be the reaction time, t ,
and the temperature, T . If each of these factors is restricted to two values, then
there are four possible experiments that could be performed, corresponding to
the four possible combinations (i.e. T1t1, T1t2, T2t1, T2t2). The second and third
combinations provide information about changing one variable relative to the first
combination whereas the fourth experiment involves a change in both variables;
as such it might provide information on interactions between the variables. In
general, if there are n variables, each restricted to two values, then a full factorial
design involves 2n experiments. A full factorial design can in principle provide
information about all possible interactions between the factors, but this may
require a large number of experiments. Fortunately, it is rare for interactions
involving large numbers of factors to be significant; in general single factors
are more important than pairwise interactions, which in turn are more important
than combinations of three factors. A fractional factorial design involves fewer
experiments and should still be able to identify the key factors, together with some
information about interactions between factors.

Factors such as temperature and time can be independently controlled by the
scientist. However, it may not be possible when formulating a QSAR to identify
compounds with all of the desired combinations of descriptor values that a factorial
analysis might suggest. This may be due to inherent correlations between certain
types of molecular properties. For example, molecular weight and the molecular
surface area are approximately correlated making it difficult to find molecules
with a low molecular weight and a high surface area and vice versa. Under such
situations other techniques are available for the construction of “well-balanced”
sets. D-optimal design is one such technique. This method uses the variance–
covariance matrix; if A is the matrix with n rows (corresponding to n molecules)
and p columns (for the p descriptors) then the variance–covariance matrix is the
n ×n matrix AAT. D-optimal design aims to identify a subset of n molecules from
a larger set of compounds such that the determinant of this variance–covariance
matrix for the subset is a maximum. A Monte Carlo search approach can be used
to search for D-optimal subsets which should have maximum variance (i.e. a large
spread of values for the descriptors) and minimum covariance (i.e. small degree of
correlation between the descriptors).
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Multiple linear regression is a supervised learning method because it makes
use of the dependent data (i.e. y) in order to derive a model. PCA is an example
of an unsupervised learning method because it does not use information about
the dependent variable when constructing the model. An additional distinction
may be drawn between parametric techniques and non-parametric techniques.
A parametric technique relies on the variables being distributed according to some
specific distribution (usually the Gaussian distribution). As such it is possible to
rely upon the properties of that particular distribution when deriving the statistical
model (as is the case for linear regression). A non-parametric technique by contrast
does not rely on the properties of some predetermined distribution.

4.3 Indicator Variables

Many descriptors have been used in QSAR equations. The first QSAR
equations were often derived for structurally related series of compounds that
differed at just one substitution point. This enabled parameters such as the
Hammett substitution constants to be used successfully. Many substituent-based
descriptors were introduced to represent other properties relevant to biological
activity [Silipo and Vittoria 1990]. However, equations based on such descriptors
are only valid within that chemical series. There is an increasing trend towards
the simultaneous variation at multiple substitution points (as might, for example,
be produced by combinatorial chemistry) and the progression of structurally
dissimilar chemical series. In order to generate QSAR equations that are applicable
to different chemical series it may be necessary to use whole-molecule descriptors
such as those described in Chapter 3. An alternative is to use indicator variables
to distinguish different members of a data set. Indicator variables are most often
used to indicate the presence or absence of particular chemical features and usually
take one of two values (zero or one). For example, they may be used to produce
an equation that is applicable to both meta- and ortho-substituted systems, or for a
set of compounds where some contain a particular functional group and some do
not. An example is the following equation for the binding of sulphonamides of the
type X–C6H4–SO2NH2 to human carbonic anhydrase [Hansch et al. 1985]:

log K = 1.55σ + 0.64 log P − 2.07I1 − 3.28I2 + 6.94 (4.21)

where I1 takes the value one for meta substituents (zero for others) and I2 is one
for ortho substituents (zero for others).

The regression coefficients for indicator variables are calculated in just the
same way as for the other descriptors. An advantage of using indicator variables
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is that they may permit data sets for molecules that act by the same underlying
mechanism to be combined into a larger set which may in turn give rise to more
reliable and predictive models. This is illustrated above where a single equation
can account for both meta and ortho substituted inhibitors.

4.4 Free–Wilson Analysis

Free–Wilson analysis is a technique devised in the early days of QSAR [Free
and Wilson 1964] that is related to the use of indicator variables. Starting from a
series of substituted compounds with their associated activity, the aim as usual is
to generate an equation of the following form:

y = a1x1 + a2x2 + a3x3 + · · · (4.22)

where x1, x2, etc. correspond to the various substituents at the different positions
in the series of structures. These xi variables are essentially equivalent to indicator
variables and they take a value of zero or one to indicate the presence or absence of
a particular substituent at the relevant position in the compound. Standard multiple
linear regression methods are used to derive the coefficients ai , which indicate the
contribution of the corresponding substituent/position combination to the activity.

A key advantage of the Free–Wilson method is its simplicity. Moreover, it does
not require any substituent parameters or other descriptors to be defined; only the
activity is needed. However, it is based on certain assumptions that may not be
valid for some data sets. First, it is assumed that each substituent on the parent
structure makes a constant contribution to the activity. Second, it is assumed that
these contributions are additive, and third that there are no interactions between the
substituents nor between the substituents and the parent structure. In addition to
these limitations there may also be problems when the same sets of substituents
always occur together in the molecules. Another drawback is that it is not possible
to make predictions for molecules containing substituents not included in the
data set.

4.5 Non-Linear Terms in QSAR Equations

One of the key advances introduced by Hansch was the use of a QSAR equation
dependent on the square of log P . A qualitative explanation for this parabolic
dependence was provided in the introduction to this chapter; Hansch also showed
how such a relationship could be derived in a more quantitative way [Hansch 1969.
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A number of alternative non-linear models have also been described. One of these
alternatives is the bilinear model [Kubinyi 1976, 1977] in which the ascending
and descending parts of the function have different slopes (unlike the parabolic
model, which is symmetrical). This may more closely mimic the observed data.
The bilinear model uses an equation of the following form:

log (1/C) = k1 log P − k2 (log (β P + 1)) + k3 (4.23)

In general, the Hansch parabolic model is often more appropriate to model
complex assays where the drug must cross several barriers whereas the bilinear
model may be more suited to simpler assay systems.

4.6 Interpretation and Application of a QSAR Equation

The ultimate value of a QSAR model, of course, depends on the impact
that it has on the direction of the project. The most obvious use of a QSAR
is in predicting the activity of molecules not yet synthesised. Prediction can be
interpolative or extrapolative [Tute 1990]. An interpolative prediction is one within
the range of properties of the set of molecules used to derive the QSAR; an
extrapolative prediction is one beyond it. Interpolative prediction is generally more
reliable than extrapolative prediction. Inevitably, perhaps, one is most interested
in predictions that improve the potency or other biological properties of the
molecules and these are often extrapolative (e.g. if the correlation is linear with
the physicochemical parameters). Nevertheless, there are many examples where
this has been possible [Fujita 1990]. In general, one should proceed gradually until
the maximum potency can be achieved. In addition to moving a project forward, a
QSAR model may also help one to determine when a particular series is unlikely
to lead to the desired goal. Resources can therefore be shifted to explore other
areas.

There have been some efforts to quantify the accuracy of the predictions from
QSAR models. This question often arises in the context of “global” and “local”
models [Brown and Lewis 2006]. The data sets used for global models are often
large and heterogeneous whereas those for local models tend to be smaller and
more homogeneous. Many of the earlier applications of QSAR techniques were
best considered as local models, being restricted to single chemical series, whereas
there is now significant interest in generating global models, often of properties
relating to physicochemical and ADME phenomena. The concept of model domain
has proved to be useful when assessing the prediction accuracy of such global
models. A simple but effective measure was found to be the similarity to the



88 An Introduction to Chemoinformatics

molecules in the training set, as measured by the distance to the nearest neighbour
and the number of nearest neighbours [Sheridan et al. 2004]. An extension of these
ideas enables one to apply a quantitative correction factor based on this “distance
to model” to the prediction from a QSAR model and thereby improve its accuracy
[Xu and Gao 2003; Todeschini et al. 2004; Bruneau and McElroy 2006].

A QSAR model may provide insights into the factors relevant for the activity
of a series of molecules and the mechanisms underlying the activity. Indeed, this
is often the most important part of a QSAR analysis. As one might expect, most
benefit derives from models based on chemically meaningful and comprehensible
descriptors. The non-linear dependency on logP as originally introduced by
Hansch is one such example. Another example is a QSAR study on the inhibition
of alcohol dehydrogenase (ADH) by 4-substituted pyrazoles (Figure 4-3) [Hansch
et al. 1986; Hansch and Klein 1986]. In this case it was possible to confirm
the interpretation of the QSAR equation by subsequent examination of the
protein–ligand x-ray structures. The following QSAR equation was derived for
the inhibition of rat liver ADH:

log 1/Ki = 1.22 log P − 1.80σmeta + 4.87 (4.24)

where σmeta is the Hammett constant for meta substitutents and Ki is the
enzyme inhibition constant. The negative Hammett parameter is consistent with
the fact that the pyrazole group binds to the catalytic zinc atom in the enzyme;
electron-releasing substituents X will increase the electron density on the nitrogen
and increase binding. The near-unity coefficient of logP was interpreted as
meaning that the partitioning of X between water and the enzyme parallels
that between water and octanol, with complete desolvation of the substituent.
The x-ray structure revealed that the substituent occupied a long, channel-like
hydrophobic pocket and that there would therefore indeed be expected to be
complete desolvation on binding.

N N
H

X

Figure 4-3. Generic structure of 4-pyrazole inhibitors of alcohol dehydrogenase.
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5. PRINCIPAL COMPONENTS REGRESSION

In principal components regression (PCR) the principal components are
themselves used as variables in a multiple linear regression. As most data
sets provide many fewer “significant” principal components than variables (e.g.
principal components whose eigenvalues are greater than one) this may often lead
to a concise QSAR equation of the form:

y = a1PC1 + a2PC2 + a3PC3 + · · · (4.25)

This equation is now expressed in terms of the principal components, rather
than the original variables. A key point about PCR is that the most important
principal components (those with the largest eigenvalues) are not necessarily the
most important to use in the PCR equation. For example, if forward-stepping
variable selection is used then the principal components will not necessarily be
chosen in the order one, two, three, etc. This is because the principal components
are selected according to their ability to explain the variance in the independent
variables whereas PCR is concerned with explaining the variation in the dependent
(y) variable. Nevertheless, it is frequently the case that at least the first two
principal components will give the best correlation with the dependent variable.
Another feature of PCR is that as extra terms are added the regression coefficients
do not change. This is a consequence of the orthogonality of the principal
components; the extra principal components explain variance in the dependent
variable not already explained by the existing terms. One drawback of PCR is that
it may be more difficult to interpret the resulting equations, for example to decide
which of the original molecular properties should be changed in order to enhance
the activity.

6. PARTIAL LEAST SQUARES

The technique of partial least squares [Wold 1982] is similar to PCR, with the
crucial difference that the quantities calculated are chosen to explain not only the
variation in the independent (x) variables but also the variation in the dependent
(y) variables as well. Partial least squares is usually abbreviated to PLS; an
alternative name for the technique is projection to latent structures. PLS expresses
the dependent variable in terms of quantities called latent variables, comparable to
the principal components in PCR. Thus:

y = a1t1 + a2t2 + a3t3 + · · · antn (4.26)
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The latent variables ti are themselves linear combinations of the independent
variables (xi ):

t1 = b11x1 + b12x2 + · · · b1px p (4.27)

t2 = b21x1 + b22x2 + · · · b2px p (4.28)

ti = bi1x1 + bi2x2 + · · · bipx p (4.29)

The number of latent variables that can be generated is the smaller of the
number of variables or the number of observations. As with PCA the latent
variables are orthogonal to each other. However, when calculating the latent
variables PLS takes into account not only the variance in the x variables but also
how this corresponds to the values of the dependent variable.

The first latent variable t1 is a linear combination of the x values that gives
a good explanation of the variance in the x-space, similar to PCA. However,
it is also defined so that when multiplied by its corresponding coefficient a1 it
provides a good approximation to the variation in the y values. Thus a graph
of the observed values y against a1t1 should give a reasonably straight line. The
differences between these observed and predicted values are often referred to as
the residuals; these represent the variation not explained by the model.

The second latent variable is then determined. This second latent variable is
orthogonal to the first and enables more of the variation in the x dimension to
be described. It also enables the variation in the y values to be further improved,
with smaller residuals; a graph of y versus a1t1 + a2t2 will show an even better
correlation than was the case for just the first latent variable.

To illustrate the use of PLS we again consider the amino acid data set
introduced in Chapter 3 in our discussion of correlations and PCA. Free energies
of unfolding have been reported for a series of mutants of the tryptophan synthase
α subunit in which a single amino acid substitution had been made [Yutani et al.
1987]. These data (for 19 amino acids) are reproduced in Table 4-1.

PLS analysis on these 19 data points using the descriptors in Table 3-2 (Chapter 3)
suggests that just one component is significant (R2 = 0.43, Q2 = 0.31); although
the R2 can be improved to 0.52 by the addition of a second component the Q2

value falls to 0.24. By comparison, the equivalent multiple linear regression model
with all six variables has an R2 of 0.70 but the Q2 is low (0.142). The quality of the
one-component PLS model can be assessed graphically by plotting the predicted
free energies against the measured values as shown in Figure 4-4.
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Table 4-1. Free energies of unfolding of tryptophan synthase α subunit mutants.

Amino acid Free energy of unfolding (kcal/mol)

Ala 8.5
Asn 8.2
Asp 8.5
Cys 11.0
Gln 6.3
Glu 8.8
Gly 7.1
His 10.1
Ile 16.8
Leu 15.0
Lys 7.9
Met 13.3
Phe 11.2
Pro 8.2
Ser 7.4
Thr 8.8
Trp 9.9
Tyr 8.8
Val 12.0
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Figure 4-4. Graph of observed versus predicted free energies of unfolding for a one-component
PLS model based on the amino acid descriptors and data in Tables 3-2 and 4-1.
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As can be seen from the graph in Figure 4-4 this initial PLS model is rather
poor; in particular the aromatic amino acids have a much worse fit than the others.
Removal of these data and incorporation of some squared terms provides a much
improved model as is discussed elsewhere [Wold 1994].

One important feature of PLS is its ability to cope with data sets with more
than one dependent variable (i.e. multivariate problems). Here, the first component
can be considered to constitute two vectors, one in the space of the x-variables
(i.e. t1) and one in the y-space (usually written u1). These two lines give good
approximations to their respective data points but also have maximum correlation
with each other (Figure 4-5).

u1

u1

x3

x2

x1

y2

y1

t1

projection of ith 
observation

t1

Figure 4-5. The first component of a multivariate PLS model consists of two lines, one in the x-
space (t1) and one in the y-space (u1). Each line gives a good approximation to their respective
point distributions but they also achieve maximum intercorrelation. The scores obtained by
projecting each point onto these lines can be plotted (bottom figure); if there a perfect match
between the x and y data all the points would lie on the diagonal of slope one.
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An early illustrative example of a multivariate analysis using PLS is the study
by Dunn et al. (1984) who examined a set of eight halogenated hydrocarbons for
which five different measures of toxicity had been determined. Each molecule
was characterised by 11 descriptors, comprising both whole-molecule properties
such as logP , molecular weight and molar refractivity together with calculated
parameters related to the electronic structure. A PLS analysis on seven of the
compounds provided three significant components; this model was then used to
predict the activities for the eighth compound.

An important consideration when performing PLS analyses, and a matter of
considerable (and continuing) debate concerns the number of latent variables to
include in a PLS model. The fit of the model (i.e. R2) can always be enhanced
by the addition of more latent variables. However, the predictive ability (i.e. Q2)
will typically only show such an improvement in the initial stages; eventually Q2

either passes through a maximum or else it reaches a plateau. This maximum in Q2

corresponds to the most appropriate number of latent variables to include. Some
practitioners use the sPRESS parameter to guide the selection of latent variables;
this is the standard deviation of the error of the predictions:

sPRESS =
√

PRESS
N − c − 1

(4.30)

where c is the number of PLS components in the model and N is the number
of compounds. It has been suggested that one should use the smallest number
of latent variables that gives a reasonably high Q2 and that each of these latent
variables should produce a fall in the value of sPRESS of at least 5% [Wold et al.
1993]. Another related parameter is SDEP, the standard error of prediction:

SDEP =
√

PRESS
N

(4.31)

The different denominators in sPRESS and SDEP mean that the latter does not
penalise an increased number of components (c) and so a model selected using
SDEP may have more components than a model selected using sPRESS.

Other techniques can be used to demonstrate the predictivity and stability of
a PLS model (and are also applicable to other QSAR methods). Bootstrapping
attempts to simulate the effect of using a larger data set by randomly selecting
a number of different sets, each of size N , from the data set. In each randomly
selected set some of the data will be present more than once and some of the data
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will not be present at all. By deriving PLS models for each of these randomly
selected sets one can assess the variation in each of the terms in the PLS model.
Another approach is to randomly assign the activities, such that the wrong y value
is associated with each row of x values. A PLS model is then derived for this set
and the procedure repeated. The predictive nature of the model associated with the
true, non-randomised, data set should be significantly greater than is obtained for
the random sets.

7. MOLECULAR FIELD ANALYSIS AND PARTIAL
LEAST SQUARES

One of the most significant developments in QSAR in recent years was the
introduction of Comparative Molecular Field Analysis (CoMFA) by Cramer et al.
[1988] and Kubinyi [1998a]. The aim of CoMFA is to derive a correlation between
the biological activity of a series of molecules and their 3D shape, electrostatic and
hydrogen-bonding characteristics. The data structure used in a CoMFA analysis
is derived from a series of superimposed conformations, one for each molecule
in the data set. These conformations are presumed to be the biologically active
structures, overlaid in their common binding mode. Each conformation is taken
in turn, and the molecular fields around it are calculated. This is achieved by
placing the structure within a regular lattice and calculating the interaction energy
between the molecule and a series of probe groups placed at each lattice point. The
standard fields used in CoMFA are electrostatic and steric. These are calculated
using a probe comprising an sp3-hybridised carbon atom with a charge of +1.
The electrostatic potential is calculated using Coulomb’s law and the steric field
using the Lennard–Jones potential (see Appendix 2). This process is illustrated in
Figure 4-6; the energy calculations are analogous to the GRID approach devised by
Goodford for use in structure-based design [Goodford 1985]. The results of these
calculations are placed into a data matrix. Each row in the data matrix corresponds
to one molecule and each column corresponds to the interaction energy of a
particular probe at a specific lattice point. If there are L lattice points and P probe
groups, then there are L × P columns. A final column is added corresponding to
the activities of the molecules (Figure 4-6).

PLS is then used to analyse the data matrix, the aim being to derive an equation
that correlates the biological activity with the different probes at the various lattice
points. The general form of the equation that results can be written:

activity = C +
L∑

i=1

P∑

j=1

ci j Si j (4.32)



Computational Models 95

O

OH

probe 1 probe 2

probe interaction energies 
at each vertex stored in 
the relevant columns

activity 
column

each row corresponds 
to one molecule

Figure 4-6. In CoMFA each molecule is placed within a regular grid and interaction energies are
computed with probe groups to give a rectangular data structure.

Each coefficient ci j corresponds to placing probe j at lattice point i with
Si j being the corresponding energy value. C is a constant. These coefficients
indicate the significance of placing the relevant probe group at that lattice point.
By connecting points with the same coefficients a 3D contour plot can be produced
that identifies regions of particular interest. For example, one may be able to
identify regions where it would be favourable to place positively charged groups
or where increases in steric bulk would decrease the activity. This is illustrated in
Figure 4-7 which shows the results of a CoMFA study on a series of coumarin
substrates and inhibitors of cytochrome P4502A5, an enzyme involved in the
metabolism of drug substances [Poso et al. 1995]. Several different models were
considered, with the highest Q2 value being obtained for a five-component model
based on the standard steric and electrostatic fields, though a model with a
lower sPRESS value and just three components was obtained using a field based
on the lowest unoccupied molecular orbital (LUMO). Graphical display of the
fields made it possible to identify regions around the ligands where it would
be favourable and/or unfavourable to place negative charge and steric bulk. In
particular, a large electrostatic field was observed near the lactone moiety, possibly
indicating a hydrogen bonding interaction between the ligand and the enzyme
(Figure 4-7).

The results of a 3D QSAR depend on a number of factors, each of which must
be carefully considered. As with the derivation of other QSAR models one first
needs to decide which compounds to include. It is then necessary to decide upon
the probes to use, the energy function used to calculate the probe energies and the
lattice spacing. One of the most important considerations involves the selection of
the conformations and their alignment prior to the analysis. This may be relatively
straightforward when one is working with a congeric series of compounds that all
have some key structural feature that can be overlaid. For example, the original
CoMFA paper examined a series of steroid molecules which were overlaid using
the steroid nucleus. Data sets that contain molecules from different chemical series
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Figure 4-7. Contour representation of the key features from a CoMFA analysis of a series of
coumarin substrates and inhibitors of cytochrome P4502A5 [Poso et al. 1995]. N+ indicates
regions where it is favourable to place a negative charge and N− where it would be unfavourable.
Similarly, S +/S− indicate regions where it would be favourable/unfavourable to place steric
bulk. Also shown are a number of superimposed ligands, and the chemical structure of a typical
ligand, methoxsalen (top left). (Adapted from Leach 2001.)

may be more difficult to overlay. Another issue concerns variable selection. This is
particularly acute for CoMFA due to the high degree of correlation between many
of the variables, particularly those lattice points that are located in the same region
of space [Cruciani et al. 1993]. A procedure called Generating Optimal Linear PLS
Estimations (GOLPE) can be used to select multiple combinations of variables
using fractional factorial design [Baroni et al. 1993]. For each combination of
variables a PLS model is derived. At the end of the process only those variables
that are found to significantly improve the predictive ability of the model are
retained for the final PLS analysis. The basis of a related technique termed Smart
Region Definition (SRD) [Pastor et al. 1997] involves first identifying the most
important lattice points in a traditional CoMFA (these are the points with a high
weight in the CoMFA equation). These points may themselves be merged together
if they are spatially close and contain the same information (i.e. are correlated)
to give a final subset of data points for the PLS analysis. By focussing on a
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relatively small number of information-rich, uncorrelated variables the final PLS
model should be of higher quality than would otherwise be the case.

Since its introduction the CoMFA method has been extensively applied,
leading to many hundreds of publications, reviews and books. In addition to
the many practical applications of CoMFA much effort has also been expended
investigating the theoretical foundations of the approach. These latter studies have
identified a number of potential sources of error in the method and have resulted
in recommendations for minimising such errors [Thibaut et al. 1993]. Several of
these have already been mentioned, such as the selection and alignment of the
active conformations, the grid spacing, grid orientation and selection of probes,
the PLS procedure, the design of training and test sets and the cross-validation of
the models. In addition, many variants and related techniques have been described;
of these we will mention just one, Comparative Molecular Similarity Indices
Analysis (CoMSIA) [Klebe et al. 1994]. The energy functions typically used
to calculate the field values in CoMFA can give rise to significant variation in
the energy for very small changes in position. For example, the Lennard–Jones
potential traditionally used to calculate the steric field becomes very steep close to
the van der Waals surface of the molecule and shows a singularity at the atomic
positions (as does the Coulomb potential used to calculate the electrostatic field).
In CoMFA, these issues are dealt with by applying arbitrary cut-offs; the overall
effect is a loss of information, with the resulting contour plots being fragmented
and difficult to interpret. In CoMSIA such fields are replaced by similarity values
at the various grid positions. The similarities are calculated using much smoother
potentials that are not so steep as the Lennard–Jones and Coulomb functions and
have a finite value even at the atomic positions. The use of these similarity indices
is considered to lead to superior contour maps that are easier to interpret. They
also have the advantage of extending to regions within the ligand skeletons.

8. SUMMARY

Mathematical models of biological processes continue to play an important
role in drug discovery. In this chapter we have described multiple linear regression
and PLS, which are currently the most widely used techniques for deriving QSAR
and QSPR models. For example, many of the models for predicting ADMET
properties use these techniques, as described in Chapter 8. Several other methods
for constructing models are also available, some of which have particular utility
for certain types of problems. In particular, methods that are more applicable to
large data sets will be considered in Chapter 7 in the context of the analysis of
HTS data.





Chapter 5

SIMILARITY METHODS

1. INTRODUCTION

Substructure and 3D pharmacophore searching involve the specification of a
precise query, which is then used to search a database to identify compounds
of interest. These approaches are clearly very useful ways to select compounds
but they do have some limitations. First, one requires sufficient knowledge to be
able to construct a meaningful substructure or 3D pharmacophore. However, this
knowledge may not always be available if, for example, only one or two weakly
active compounds are known. Second, in such searches a molecule either matches
the query or it does not; as a consequence, the database is partitioned into two
different sets with no sense of the relative ranking of the compounds. Finally, the
user has no control over the size of the output. Thus, a query that is too general can
result in an enormous number of hits whereas a very specific query may retrieve
only a very small number of hits.

Similarity searching offers a complementary alternative to substructure
searching and 3D pharmacophore searching. Here, a query compound is used to
search a database to find those compounds that are most similar to it. This involves
comparing the query with every compound in the database in turn. The database
is then sorted in order of decreasing similarity to the query.

Similarity searching offers several advantages. First, there is no need to define
a precise substructure or pharmacophore query since a single active compound
is sufficient to initiate a search. Second, the user has control over the size of the
output as every compound in the database is given a numerical score that can be
used to generate a complete ranking. Alternatively, one can specify a particular
level of similarity and retrieve just those compounds that exceed the threshold.
Finally, similarity searching facilitates an iterative approach to searching chemical
databases since the top-scoring compounds resulting from one search can be used
as queries in subsequent similarity searches.

The rationale for similarity searching lies in the similar property principle
[Johnson and Maggiora 1990] which states that structurally similar molecules
tend to have similar properties. Thus, given a molecule of known biological
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activity, compounds that are structurally similar to it are likely to exhibit the same
activity. This characteristic has been referred to as neighbourhood behaviour
[Patterson et al. 1996]. In a typical similarity search, a molecule which is known to
possess some desirable activity is used as a query in the hope of identifying other
molecules that show the same activity. Similarity searching is thus widely used
to identify compounds for screening. In fact, similarity searching is sometimes
included within the family of techniques now known as virtual screening, which is
the computational, or in silico, equivalent of experimental screening. Other virtual
screening techniques are discussed in Chapter 8.

There are many examples of series of active compounds that provide evidence
for the neighbourhood principle. A simple example is given in Figure 5-1 which
shows three compounds which are all active at opioid receptors: morphine, codeine
and heroin. The structural similarities of the compounds should be clear.

The main difficulty with similarity searching is that assessing the degree of
similarity between two objects is subjective, with no “hard and fast” rules. In order
to be able to quantify the similarity between two molecules, a similarity searching
method requires two components: first, a set of numerical descriptors that can be
used to compare molecules, and second, a similarity coefficient which provides a
way of quantifying the degree of similarity based on the descriptors.

Similarity searching in chemical databases was first introduced in the mid-
1980s [Carhart et al. 1985; Willett et al. 1986]. We begin our discussion by
describing one of these early approaches which was based on 2D fingerprints and
the use of the Tanimoto similarity coefficient. Many different methods have been
developed subsequently involving a wide range of descriptors and a variety of
similarity coefficients. The main body of the chapter is concerned with the various
methods that have been developed over the years, starting with other types of 2D
descriptors and then moving on to 3D similarity methods. Given the wide variety
of different methods that has been developed it is important that their relative
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Figure 5-1. Compounds active at opioid receptors.
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performances can be compared. The final section describes some comparative
studies that have been reported in the literature.

2. SIMILARITY BASED ON 2D FINGERPRINTS

Perhaps the most commonly used similarity method is based on the 2D
fingerprints that were originally developed for substructure searching and which
have already been described in Chapters 1 and 3. To recapitulate, fingerprints are
binary vectors where each bit indicates the presence (“1”) or absence (“0”) of a
particular substructural fragment within a molecule. The similarity between two
molecules represented by 2D binary fingerprints is most frequently quantified
using the Tanimoto coefficient which gives a measure of the number of fragments
in common between the two molecules [Willett et al. 1986].

The Tanimoto similarity between molecules A and B, represented by binary
vectors, is given by:

SAB = c
a + b − c

(5.1)

where there are a bits set to “1” in molecule A, b bits set to “1” in molecule B,
and c “1” bits common to both A and B. The value of the Tanimoto coefficient
ranges from zero to one. A value of one indicates that the molecules have identical
fingerprint representations (note that this does not necessarily mean they are
identical molecules) and a value of zero indicates that there is no similarity (i.e.
there are no bits in common between the two molecules). Figure 5-2 provides
a simple hypothetical example of the calculation of the Tanimoto similarity
coefficient.

1 0 1 1 1 1 1 1 10 0 0

0 0 1 1 0 1 0 1 10 1 0

A

B

a=8

b=6

c=5

8 +6 − 5

5
= 0.56=SAB

Figure 5-2. Calculating similarity using binary vector representations and the Tanimoto
coefficient.
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3. SIMILARITY COEFFICIENTS

The concept of similarity is important in many fields (not just chemistry) and
many different similarity coefficients have been developed [Sneath and Sokal
1973; Willett et al. 1998]. Those most commonly used in chemical applications
are shown in Table 5-1. As mentioned, the Tanimoto coefficient is the most
widely used similarity coefficient for binary fingerprints such as structural keys
and hashed fingerprints; it can also be used to calculate the similarity between
molecules that are represented by continuous data such as the topological indices
introduced in Chapter 3. Table 5-1 includes the more general form of the Tanimoto
coefficient when the molecules A and B are represented by vectors, x, of length N
with the i th property having the value xi. It is trivial to show that the continuous

Table 5-1. Similarity (S) or distance (D) coefficients in common use for similarity searching in
chemical databases. For binary data a is defined as the number of bits set to “1” in molecule A,
b as the number of bits set to “1” in molecule B and c as the number of bits that are “1” in both
A and B. (From Willett et al. 1998.)

Name Formula for continuous variables Formula for binary
(dichotomous) variables

Tanimoto
(Jaccard)
coefficient)

SAB = ∑N
i=1 xi Axi B∑N

i=1 (xi A)2+∑N
i=1 (xi B )2−∑N

i=1 xi Axi B

Range: −0.333 to +1

SAB = c
a+b−c

Range: 0 to 1

Dice coefficient
(Hodgkin index)

SAB = 2
∑N

i=1 xi Axi B∑N
i=1 (xi A)2+∑N

i=1 (xi B)2

Range: −1 to +1

SAB = 2c
a+b

Range: 0 to 1

Cosine similarity
(Carbó index)

SAB =
∑N

i=1 xi Axi B[∑N
i=1 (xi A)2∑N

i=1 (xi B )2
]1/2

Range: −1 to +1

SAB = c√
ab

Range: 0 to 1

Euclidean
distance

DAB =
[∑N

i=1 (xi A − xi B)2
]1/2

Range: 0 to ∞
DAB = √

a + b − 2c

Range: 0 to N

Hamming
(Manhattan
or City-block)
distance

DAB =∑N
i=1 |xi A − xi B |

Range: 0 to ∞
DAB = a + b − 2c
Range: 0 to N

Soergel distance DAB =
∑N

i=1 |xi A−xi B |
∑N

i=1 max(xi A,xi B )

Range: 0 to 1

DAB = a+b−2c
a+b−c

Range: 0 to 1
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form of the Tanimoto coefficient reduces to Equation 5.1 when the vectors consist
of binary values.

It is important to note in Table 5-1 that some coefficients such as the Tanimoto
and Dice coefficients measure similarity directly; others such as the Hamming
and Euclidean formulae provide the distance (or dissimilarity) between pairs of
molecules. As can also be observed from Table 5-1 some coefficients naturally
provide values between zero and one; in most other cases it is possible to produce
values in this range by a straightforward normalisation procedure. This provides a
simple way to interconvert similarity and distance coefficients (i.e. D = 1 − S).
The Soergel distance is the complement (1 − STAN) of the Tanimoto (or Jaccard)
similarity coefficient when dichotomous (binary) variables are used, and was in
fact developed independently of it. Our focus in this chapter is on similarity; in
Chapter 6 we will discuss the selection of diverse sets of compounds for which
measures of distance or dissimilarity are particularly important.

The Tversky index [Tversky 1977; Bradshaw 1997] is an example of an asymmetric
index (i.e. SAB 
= SB A) and takes the form:

STversky = c
α (a − c) + β (b − c) + c

(5.2)

where α and β are user-defined constants. When α = 1 and β = 0 then the
Tversky similarity value reduces to c/a and represents the fraction of the features
in A which are also in B; thus a value of one with these parameters indicates that
A is a “substructure” of B. If α = β = 1 then the Tversky index becomes the
Tanimoto index and when α = β = 1/2 it becomes the Dice coefficient.

3.1 Properties of Similarity and Distance Coefficients

For certain types of calculations it is important to know whether a distance
coefficient is a metric. To be described as such, four properties must be met:

1. The distance values must be zero or positive, and the distance from an object
to itself must be zero: DAB ≥ 0; DAA = DB B = 0

2. The distance values must be symmetric: DAB = DB A
3. The distance values must obey the triangle inequality: DAB ≤ DAC + DBC
4. The distance between non-identical objects must be greater than zero

The Hamming, Euclidean and Soergel distance coefficients obey all four
properties; the complements of the Tanimoto, Dice and Cosine coefficients do not
obey the triangle inequality (with the exception of the complement of the Tanimoto
coefficient when dichotomous variables are used).
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Coefficients are monotonic with each other if they produce the same similarity
rankings. For example, the Hamming and Euclidean distances are monotonic as
are the Tanimoto and Dice coefficients.

It may also be important to be aware of other characteristics of the various
coefficients [Willett et al. 1998]. As can be seen from the formulae in Table 5-1, the
Tanimoto, Dice and Cosine coefficients are all directly dependent upon the number
of bits in common. The presence of common molecular features will therefore
tend to increase the values of these coefficients. By contrast, the Hamming and
Euclidean distances effectively regard a common absence of features as evidence
of similarity. A consequence of this difference is that small molecules will often
have lower similarity values (and larger distance separations) when using the
popular Tanimoto coefficient since they naturally tend to have fewer bits set to
“1” than large molecules. Smaller molecules can appear to be closer together
when using the Hamming distance, which does take into account the absence of
common features (i.e. values in the bitstrings count whether they are both “0” or
both “1”). To illustrate some of these characteristics we show in Figure 5-3 three
pairs of molecules which all differ by the substitution of a chlorine atom for a
trifluoromethyl group. The Soergel and Hamming distances between these pairs
of molecules are shown, calculated using the Daylight hashed fingerprints, from
which some of this size dependency can be observed.

N SN

CF3

Soergel 0.33
Hamming 78

Me CF3

O OH

CF3

N SN

Cl

Me Cl

O OH

Cl

Soergel 0.86
Hamming 24

Soergel 0.41
Hamming 41

Figure 5-3. A comparison of the Soergel and Hamming distance values for two pairs of
structures to illustrate the effect of molecular size.
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One reason for the popularity of the Tanimoto coefficient for similarity
searching is that it includes a degree of size normalisation via the denominator
term. This can help to avoid a bias towards the larger molecules which tend to
have more bits set than do smaller molecules. Conversely, the more bits set in a
query molecule the higher is the average Tanimoto coefficient of the molecules in
a database to it [Flower 1998]. Indeed, some workers have suggested the use of
composite indices which combine two or more of the standard measures to try and
overcome some of these characteristics when they cause unwanted effects to occur
[Dixon and Koehler 1999].

4. OTHER 2D DESCRIPTOR METHODS

Many of the 2D descriptors described in Chapter 3 can be used to compute
similarity values. Fingerprint-like descriptors such as atom pairs and topological
torsions can be treated as described above. Similarity searches can also be
based on continuous whole molecule properties such as the calculated log P ,
molar refractivity and topological indices. In this case, the similarity is usually
quantified using a distance coefficient such as Euclidean distance, which measures
the distance between structures in a multidimensional descriptor space. Prior to
calculating similarities, the data should be scaled to ensure that each descriptor
makes an equal contribution to the similarity score. Statistical methods such
as PCA are often used to reduce a large set of descriptors to a smaller set of
orthogonal descriptors. For example, Basak et al. [1988] reduced 90 topological
indices to ten principal components which were then used as the descriptors for
a similarity analysis. In a similar vein, Xue et al. [1999] and colleagues found
that short binary bitstrings consisting of just 32 structural fragments were more
effective than conventional 2D fingerprints when combined with three numerical
2D descriptors (the number of aromatic bonds, the number of hydrogen bond
acceptors and the fraction of rotatable bonds).

4.1 Maximum Common Subgraph Similarity

The similarity methods described so far do not identify any local regions of
equivalence between the two structures being compared. They have therefore been
called global measures [Downs and Willett 1995]. An alternative approach to
measuring similarity involves the generation of a mapping or alignment between
the molecules. An example of this is the maximum common subgraph (MCS).
The MCS is the largest set of atoms and bonds in common between the two
structures; an example is shown in Figure 5-4. The number of atoms and bonds
in the MCS can be used to compute a Tanimoto-like coefficient that quantifies the
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Figure 5-4. The maximum common substructure between the two molecules is shown in bold.

degree of similarity between the two compounds. For example, one could calculate
the number of bonds in the MCS divided by the total number of bonds in the query
structure.

Identification of the MCS in two graphs belongs to the class of problems
that are NP-complete, in common with other graph searching techniques such as
subgraph isomorphism. A number of both exact and approximate methods have
been devised for identifying the MCS [Raymond and Willett 2002a]. The first
application of the MCS to database searching was described by Hagadone [1992]
who used a two-stage approach. First a fragment-based search was used to provide
an upper-bound to the size of the MCS. The database was then sorted using the
upper-bounds so restricting the more costly MCS calculation to those structures
above a given threshold. Recently, a new algorithm called RASCAL has been
described by Raymond and Willett that is able to perform tens of thousands of
comparisons a minute [Raymond et al. 2002; Raymond and Willett 2002b]. In this
case speed-up is achieved through the use of chemically relevant heuristics, a fast
implementation of the clique detection process (see Chapter 2) that underlies MCS
detection, and the use of very efficient screens that prevent many of the more costly
MCS comparisons from being performed.

4.2 Reduced Graph Similarity

Various forms of reduced graph representations based on the 2D graph can be
used for similarity calculations. The use of reduced graphs for the representation
and searching of Markush structures in patents was described in Chapter 1. Their
value in similarity searching arises from the fact that they condense a structure’s
key features while retaining the connections between them and so they can offer
the possibility of identifying structures that have similar binding characteristics but
different underlying skeletons. In addition, their smaller number of nodes makes
searching operations faster. Various types of reduced graph representation have
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been proposed for similarity searching [Takahashi et al. 1992; Fisanick et al. 1994;
Gillet et al. 2003] with the similarity between two molecules being quantified
by mapping the reduced graphs to fingerprints [Gillet et al. 2003; Harper et al.
2004] and by using graph matching methods [Takahashi et al. 1992; Barker et al.
2006]. One particularly interesting type was introduced by Rarey and Dixon; when
combined with fast mapping algorithms their Feature Tree representations allow
similarity searching to be performed against large databases [Rarey and Dixon
1998; Rarey and Stahl 2001].

5. 3D SIMILARITY

Similarity methods that are based on rapidly calculated properties (particularly
those derived from structural keys or hashed fingerprints) have become very
popular, particularly when dealing with large numbers of molecules. However,
methods that are based on 2D structure will tend to identify molecules with
common substructures, whereas the aim is often to identify structurally different
molecules.

As we have already indicated in Chapter 2, it is well known that molecular
recognition depends on the 3D structure and properties (e.g. electrostatics and
shape) of a molecule rather than the underlying substructure(s). An illustration
of this is provided in Figure 5-5, which shows the three opioid ligands from
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Figure 5-5. Similarities to morphine calculated using Daylight fingerprints and the Tanimoto
coefficient.
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Figure 5-6. 3D overlay of morphine and methadone showing the superimposition of the basic
nitrogens and the benzene rings.

Figure 5-1 together with a fourth (methadone). The similarity between morphine
and the three other molecules as measured using the Daylight hashed fingerprints
and the Tanimoto coefficient is shown in the figure. These similarity values
reflect the clear structural similarities between morphine, codeine and heroin.
Methadone, by contrast, has a very low similarity score, despite the fact that it
is also active against opioid receptors. Even from the representations shown in
Figure 5-5 it should be clear that it might be possible to align the conformations of
the molecules to give a good overlap of the benzene rings and the nitrogen atoms.
Such an overlay is shown in Figure 5-6. For reasons such as this there has been
much interest in similarity measures based on 3D properties.

3D methods clearly require the conformational properties of the molecules
to be considered and are therefore more computationally intensive than
methods based on 2D descriptors. The complexity also increases considerably
if conformational flexibility is taken into account. 3D similarity methods can
be divided into methods that are independent of the relative orientation of the
molecules and methods that require the molecules to be aligned in 3D space prior
to calculating their similarity.

5.1 Alignment-Independent Methods

The screening systems developed for 3D substructure searching can be used
for similarity searching in much the same way that 2D fingerprints are used.
3D descriptors such as geometric atom pairs and their distances, valence and
torsion angles and atom triplets can be represented in a binary fingerprint and
then used with the Tanimoto coefficient exactly as for 2D fingerprints [Fisanick
et al. 1992]. However, to calculate all of the atom pairs and triplets in a molecule
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can be time consuming especially when conformational flexibility is taken into
account.

Other 3D similarity methods are based on the 3D equivalent of the MCS
[Moon and Howe 1990; Pepperrell and Willett 1991]. This is the largest set of
atoms with matching interatomic distances (within some user-defined tolerances).
As noted previously these methods are computationally expensive. When using
a pharmacophore representation of the molecule then the 3D MCS problem
is closely related (and in some cases identical) to the identification of the
pharmacophore(s) common to a set of active compounds (see Chapter 2).

Many 3D approaches are based on the use of distance matrices where the value
of each element (i, j) equals the interatomic distance between atoms i and j .
One approach that aims to identify local regions of equivalence was described by
Pepperrell et al. [1990]. Consider an atom i in the first molecule. The i th row of the
distance matrix for molecule A contains the distances from i to every other atom.
This is compared with each of the rows i ′ for the distance matrix for molecule B to
identify the matching distances (equal within some tolerance value). A similarity
between atom i from molecule A and atom i ′ from molecule B can be computed
using the Tanimoto coefficient. This provides an atom-match matrix of similarities
between all atoms in A and all atoms in B. This atom-match matrix can then be
used to identify pairs of atoms which have geometrically similar environments,
from which a global intermolecular similarity between the two molecules can then
be calculated.

The pharmacophore key descriptors introduced in Chapter 3 are increasingly
used for similarity comparisons. As binary representations they can be compared
using the Tanimoto coefficient, analogous to 2D fingerprints. However, the
characteristics of pharmacophore keys are often rather different to those of 2D
fingerprints. This can affect their performance in similarity searching. In particular,
pharmacophoric fingerprints tend to be more sparse than 2D fingerprints (i.e. a
smaller proportion of the bits are set to “1”). A typical drug-like molecule may
contain approximately 250 3-point pharmacophores out of a possible 180,000
(using seven features and 17 distance bins [Good and Lewis 1997]). As illustrated
earlier, sparse fingerprints can result in rather low similarity values when using the
Tanimoto coefficient. Small differences in the pharmacophoric features present
can also lead to large changes in the fingerprint. These effects can be countered
in a number of ways. For example, the number of distance bins can be reduced;
groups of three adjacent bins can be set rather than just that corresponding to
the calculated distance; and the Tanimoto coefficient can be modified to reduce its
sensitivity to the total pharmacophore count [Mason et al. 1999; Good et al. 2001].
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5.2 Alignment Methods

Alignment methods operate by manipulating and moving the molecules in
3D space, in contrast to the previous methods which do not require the relative
orientation of the molecules to be considered. Alignment methods require the
degrees of freedom related to the conformational flexibility of the molecules to
be considered together with their relative orientations. Many different alignment
techniques have been developed [Lemmen and Lengauer 2000].

Consider two molecules, each in a predefined conformation. When one
structure is moved relative to the other the similarity measure will typically
change. The goal is generally to determine the alignment of the two structures
at which the similarity measure reaches a maximum. This corresponds to the
optimal alignment between the two structures. Conformational flexibility may be
dealt with most straightforwardly by generating a number of conformations for
each molecule and then exploring all possible combinations of conformations.
Alternatively, the conformations of the molecules can be varied at the same time
as the relative orientations in an attempt to identify the best overlap.

As well as different ways of tackling the alignment problem, many different
ways of representing molecules and calculating the similarity have been developed
[Good and Richards 1998]. For example, molecules can be represented by
their shapes (e.g. through consideration of the positions of atom centres or by
considering molecular volume); by projecting their properties onto a surface; or
by calculating molecular properties over all space or at regular intervals on a grid
surrounding the molecules.

5.3 Field-Based Alignment Methods

One of the earliest methods for computing molecular similarity was proposed
by Carbó et al. [1980] based on superimposed electron density maps. The
similarity metric used in these calculations is essentially the same as the Cosine
coefficient and is shown below:

CAB =
∫

PA PBdv
(∫

P2
Adv

)1/2 (∫ P2
Bdv

)1/2 (5.3)

where PA and PB are the electron densities of molecules A and B. The numerator
measures the degree of overlap between the two molecules and the denominator
is a normalisation term. The integrals are performed over all space. A drawback
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of the Carbó coefficient is that it does not measure the magnitude of the fields
being compared and thus the similarity is based on the degree of overlap only.
Moreover, electron density is typically calculated using quantum mechanics and is
therefore costly to compute. It was also found to be insufficiently discriminatory
a property to use in similarity searching. It is therefore more common to use
fields based on the Molecular Electrostatic Potential (MEP) together with various
shape-derived properties. The properties are usually mapped to the vertices of 3D
grids surrounding each molecule as in a CoMFA calculation (see Chapter 4). This
approximation greatly simplifies the problem of integrating the property over all
space. For example, the molecular electrostatic potential can be calculated at each
vertex, r, of a grid surrounding a molecule with N atoms, using the formula:

Pr =
N∑

i=1

qi

|r − Ri | (5.4)

where qi is the point charge on atom i , at position Ri from the grid point, r. Steric
and hydrophobic fields can be calculated in an analogous manner. Given some
predefined relative orientation of two molecules, the degree of similarity of their
corresponding fields can be computed by comparing corresponding grid points
using a modified version of the Carbó coefficient; for a total of n grid points this
is given by:

CAB =

n∑
i=1

PA,r PB,r

( n∑
r=1

P2
A,r

)1/2 ( n∑
r=1

P2
B,r

)1/2 (5.5)

Other coefficients used to measure molecular similarity include the Hodgkin
index [Hodgkin and Richards 1987] (which takes the magnitude of the fields into
account as well as their shapes, see Table 5-1) and the Spearman rank-correlation
coefficient. The latter involves calculating the Pearson correlation coefficient of
the relative ranks of the data:

SAB = 1 −
6

n∑
r=1

d2
r

n3 − n
(5.6)

where dr is the difference in the property ranking at point r of two structures and
n is the total number of points over which the property is measured [Namasivayam
and Dean 1986; Sanz et al. 1993].



112 An Introduction to Chemoinformatics

Grid-based similarity calculations can be very time-consuming. For example,
the brute-force approach to maximising the similarity between two molecules
would involve rotating and translating one grid relative to the other in all possible
ways and recalculating the similarity at each position. Fortunately, a number
of methods have been devised for improving the efficiency of this process. In
the field-graph method, the minimum-energy regions in the potential map are
identified as nodes in a graph and clique detection is used to derive possible
overlaps [Thorner et al. 1997]. A more common approach is to approximate the
field distribution using a series of Gaussian functions [Kearsley and Smith 1990;
Good et al. 1992; Grant and Pickup 1995; Grant et al. 1996]; these provide an
analytical solution to the problem, leading to a substantial reduction in the time
required to compute the overlap between a given orientation of two structures.
The molecular electrostatic potential of a molecule can be approximated using a
summation of two or three atom-centred Gaussian functions that take the following
functional form:

G = γ . e−α|r−Ri |2 (5.7)

These Gaussian functions can be substituted for the 1/r term in the electrostatic
potential term in the Carbó or Hodgkin coefficient. The advantage is that
the similarity calculation is broken down into a series of readily calculable
exponent terms. Gaussian functions have also been used to provide more realistic
representations of molecular shape rather than the traditional “hard sphere” models
[Grant and Pickup 1995; Grant et al. 1996].

5.4 Gnomonic Projection Methods

An alternative to the use of “explicit” representations in Cartesian space is
to use the technique of gnomonic projection. Here, the molecule is positioned
at the centre of a sphere and its properties projected onto the surface of the
sphere. The similarity between two molecules is then determined by comparing
the spheres. Typically the sphere is approximated by a tessellated icosahedron
or dodecahedron. For example, in the SPERM program, molecular properties are
mapped onto vertices of an icosahedron by projecting vectors from the centre of
the molecule onto its vertices and taking the value of the property at the point
where the vector crosses the molecular surface [van Geerestein et al. 1990; Perry
and van Geerestein 1992], Figure 5-7. A database structure can then be aligned to
a target by rotating it about the centre relative to the target until the differences
between the vertices from the two molecules is minimised. The similarity is based
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Figure 5-7. Schematic illustration of the use of gnomonic projections to compare molecules. The
value at each vertex of the icosahedron is obtained by projecting a vector as indicated from the
centre and determining the value of the property where the vector crosses the molecular surface.
In practice each of the triangular faces of the icosahedron is divided (tessellated) into a series of
smaller triangles.

on calculating the root mean squared difference between the properties calculated
at each of the n vertices, r:

RMSDAB =
√√√√

n∑

i=1

(
PA,r − PB,r

)2

n
(5.8)

where PA,r and PB,r are the properties of molecules A and B at point r. Other
methods based on gnomonic projections have also been described [Chau and Dean
1987; Blaney et al. 1993; Blaney et al. 1995]. One drawback of such approaches
is that the comparisons are performed only in rotational space (i.e. translations are
not considered) and so the results are dependent upon the choice of the centres of
projection for each molecule.

5.5 Finding the Optimal Alignment

In addition to a method for calculating molecular similarity it is generally
necessary to have a mechanism for exploring the orientational (and sometimes
the conformational) degrees of freedom of the molecules in order to identify
the optimal alignment where the similarity is maximised. Standard minimisation
methods have been used to achieve this, such the simplex algorithm [Good
et al. 1992] or one of the gradient-based methods [McMahon and King 1997].
Monte Carlo methods may also be used to explore the search space [Parretti
et al. 1997]. In the Field-Based Similarity Searcher (FBSS) program a GA (see
Chapter 2) is used to find an optimum alignment based on steric, electrostatic or
hydrophobic fields or any combination thereof [Wild and Willett 1996; Thorner
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et al. 1996]. Conformational flexibility can be handled directly within FBSS by
allowing conformations about rotatable bonds to vary simultaneously with the
relative orientations of the molecules.

3D similarity methods tend to be computationally expensive and so there is
much interest in the use of methods for speeding up the calculations using some
form of screening. One example is the use of a rapidly calculated volume and
various properties related to the principal axes of inertia [Hahn 1997]. In this
method, only those molecules that pass the screen proceed to the full alignment
phase.

5.6 Comparison and Evaluation of Similarity Methods

Given the wide variety of similarity searching methods that are available it
is important to be able to evaluate their performance. Since the aim of similarity
searching is usually to identify molecules with similar properties, it is appropriate
to test new methods on data sets for which property or activity data is available.
Typically predictions are made about compounds for which the values are known.
The predicted values are then compared with observed values to give an estimate
of the effectiveness of a method. This is known as simulated property prediction.
In the “leave one out” approach, each molecule is taken in turn and its nearest
neighbour (i.e. the most similar molecule remaining in the data set) is found.
The predicted property of the molecule is assigned to be the same as its nearest
neighbour’s value. Alternatively, cluster analysis (see Chapter 6) can be used to
group similar compounds together, with the predicted value for the molecule being
taken as the average of the values for the remaining compounds in the same cluster.

Another evaluation technique is based on the calculation of enrichment
factors and hit rates [Edgar et al. 2000]. These are based on simulated screening
experiments performed using databases of compounds of known activity, see
Figure 5-8. Assume that a database of size N contains na compounds belonging to
activity class a, and that all compounds not belonging to class a are inactive (or
are assumed to be inactive). A simulated screening experiment involves taking
an active compound as the target and ranking the entire database in order of
decreasing similarity. If the similarity method is perfect then all active compounds
will appear at the top of the list; if it is ineffective then the active compounds will
be evenly distributed throughout the list. In practice, similarity methods usually
perform somewhere between these two extremes and their effectiveness can be
calculated as an enrichment factor, which is most commonly given as the ratio of
the number of actives actually retrieved at a given rank compared to the number
expected purely by chance. An alternative quantitive measure that takes account of
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Figure 5-8. Simulated screening experiment illustrating how a similarity method can retrieve
active compounds more effectively than simple random selection.

the entire ranked list is area under the receiver operator or ROC curve [Triballeau
et al. 2005].

Given that molecular recognition is based on 3D properties one might expect
3D similarity methods to be more effective than 2D methods. However, this has
hitherto not been found to be the case. In a celebrated and much-debated study
Brown and Martin [1996] compared a range of 2D and 3D descriptors using
different clustering methods and assessed their effectiveness according to how
well they were able to distinguish between active and inactive compounds. They
found the 2D MACCS keys to be most effective (despite the fact that, as we
have mentioned previously, they were designed for optimum screenout during
substructure search rather than for similarity searching). Brown and Martin [1997]
also investigated the performance of different descriptors in simulated property
prediction experiments. The descriptors were assessed according to their ability
to predict accurately the property of a structure from the known values of other
structures. The predicted properties included measured log P values together
with various calculated properties that explored the shape and flexibility of the
molecules. The results showed the same trend in descriptor effectiveness as before.
Matter and Pötter [1999] obtained similar results from an evaluation of the ability
of a wide range of 2D and 3D structural descriptors to predict biological activity.

There are several possible reasons for the apparently weaker performance
of the 3D descriptors relative to the 2D descriptors. The performance of the
2D methods may be artificially enhanced due to the characteristics of the
databases typically used in such evaluations. Such databases often contain
large numbers of close analogues, synthesised for example as part of a lead
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optimisation programme. Such analogues naturally have a high inherent degree
of 2D similarity and so introduce a bias in favour of such techniques. The poorer
performance of 3D methods may also be due to issues such as an incomplete
handling of conformational flexibility. Nevertheless, 3D methods do offer the
advantage of being able to identify structurally different compounds and so are
complementary to the 2D approaches. For example, a comparison of FBSS and
UNITY fingerprints showed that the latter retrieved more hits but that the results
from the former were more structurally diverse [Schuffenhauer et al. 2000].
Ideally, one would use both 2D and 3D methods in combination, for example,
using the data fusion techniques described below.

It has been suggested that similarity methods should be evaluated on their
ability to scaffold hop, namely their ability to identify compounds that show
similar activity to the query compound but which represent different chemotypes
or skeletons [Böhm et al. 2004]. Such compounds are valuable since they provide
alternative lead series should one fail due to difficult chemistry or poor ADME
(adsorption, distribution, metabolism and excretion) properties. Xu and Johnson
[2002] have developed a scheme for classifying compounds according to their
scaffolds and several groups have measured performance according to the number
of different scaffolds retrieved rather than absolute number of hits [Hert et al.
2004b; Jenkins et al. 2004].

Most of the evaluations of similarity methods that have been reported in
the literature are based on retrospective studies. One exception is the successful
identification of novel inhibitors of the bacterial protein ZipA. The compounds
were identified following similarity searches using the Rapid Overlay of Chemical
Structures (ROCS) program which is based on shape. Furthermore, the compounds
identified represented scaffolds that are significantly different to that of the query
[Rush et al. 2005] thus demonstrating the potential of the method for scaffold-
hopping applications.

A common observation when performing evaluation studies is that the
effectiveness of any one similarity method can vary greatly from problem to
problem and in a way that is difficult to predict. Sheridan and Kearsley [2002]
have therefore advocated the use of several different methods when carrying out
similarity searches. One way in which the results from different searches can be
combined is to use data fusion techniques [Willett 2006], the expectation being
that the combination of methods will improve on the results found using just
one method. There are different ways in which two or more sets of data can be
combined. For example, in the SUM method described by Ginn et al. [2000]
the position of a molecule in hit list 1, m1, is added to the position of the same
molecule in hit list 2, m2, to give a summed position, m1+2. The new summed
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position is then used as the basis of a reordering of all structures to give a new
fused hit list, and a new rank position for the molecule, mfused. This method can be
extended to any number of hit lists. Combining the hit lists from searches carried
out using the same query but different similarity measures has been described
as similarity fusion [Whittle et al. 2004]. While examples of this type of data
fusion have been reported that are more effective than using just one similarity
method, the performance of similarity fusion is often unpredictable. Data fusion
has also been used to combine the results of searches based on different active
compounds using the same similarity measure, which has been called group fusion.
For example, extensive studies in the MDL Drug Data Report (MDDR) database
[MDDR] have shown that consistent improvement in performance is achieved
when using group fusion [Hert et al. 2004a], especially when the compounds used
as queries are diverse. Turbo similarity searching is an extension of the group
fusion approach which can be used when just a single active compound is available
[Hert et al. 2005]. A similarity search is carried out using the method of choice.
The nearest neighbours of the query are then used as seeds for new similarity
searches and the resulting hit lists are combined using data fusion. Consistent with
the similar property principle, the assumption is made that the nearest neighbours
of the initial query compound will also be active and hence they can also be used
as queries for further similarity searches. Again, extensive studies have shown
that consistent improvement in performance was achieved over more conventional
similarity searching which is based on the initial search only. Data fusion is also
the basis of the consensus scoring approach used in protein–ligand docking, as
will be discussed in Chapter 8.

6. SUMMARY

Similarity methods provide a very useful complement to techniques such as
substructure and 3D pharmacophore searching. A number of similarity measures
have been developed that take into account various properties of the molecules.
These methods are of varying complexity, which can sometimes limit the size of
the problems that can be addressed. However, even the most demanding techniques
can now be used to search relatively large databases. Many studies have explored
the properties of the various similarity measures with a wide variety of descriptors.
The increasing number of large data sets from (HTS) will make it possible to
further evaluate and test the central tenet of similarity searching, namely that
structurally similar molecules have similar biological activities [Martin et al.
2002]. This is explored further in the following chapter which is concerned with
the related technique of diversity analysis.





Chapter 6

SELECTING DIVERSE SETS OF COMPOUNDS

1. INTRODUCTION

The rationale for selecting diverse subsets of compounds lies in the similar
property principle introduced in Chapter 5: if structurally similar compounds are
likely to exhibit similar activity then maximum coverage of the activity space
should be achieved by selecting a structurally diverse set of compounds. A diverse
subset of compounds or a diverse combinatorial library should be more likely
to contain compounds with different activities and should also contain fewer
“redundant” compounds (molecules that are structurally similar and have the same
activity). In drug discovery such diverse sets of compounds may be appropriate for
screening against a range of biological targets or when little is known about the
therapeutic target of interest.

The widespread adoption of HTS and combinatorial chemistry techniques in
the early 1990s led to a surge of interest in chemical diversity. It was widely
expected that simply making “diverse” libraries would provide an increase in the
number of “hits” in biological assays. However, it was soon realised that merely
making large numbers of molecules was not sufficient; it was also important to
take other properties into account. This in turn led to the development of concepts
such as “drug-likeness” (discussed in Chapter 8) and a recognition of the need
to achieve a balance between “diversity” and “focus” when designing libraries
(see Chapter 9). It was also recognised that it would in any case be possible to
make only an extremely small fraction of the compounds that could theoretically
be synthesised. Various estimates have been made of the number of “drug-like”
molecules that could be made, with figures between 1020 and 1060 being most
common [Valler and Green 2000]. By contrast, the compound collection at a
large pharmaceutical company may contain around 1 million molecules. Diversity
methods provide a mechanism for navigating through the relevant chemical space
in order to identify subsets of compounds for synthesis, purchase or testing.

As with similarity methods, there is no unambiguous definition of chemical
diversity nor its quantification. As a consequence, many different ways of selecting
diverse subsets have been developed. In common with similarity methods all
diversity methods use molecular descriptors to define a chemistry space. A subset
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selection method is then required to ensure that the subset of compounds covers
the defined space. It is also necessary to be able to quantify the degree of diversity
of a subset of compounds in order to compare the diversity of different data sets.

The brute-force way to select the most diverse subset would be to examine
each possible subset in turn. However, there are

Ni !
ni !(Ni − ni )! (6.1)

different subsets of size ni contained within a larger set of Ni compounds. For
example, there are more than 1010 ways to select 10 compounds out of just 50.
Typically, one has to deal with much larger numbers of compounds. Thus, it is
computationally unfeasible to enumerate all subsets and compare them directly;
approximate methods for selecting subsets must therefore be used.

This chapter concentrates on the four main approaches to selecting diverse sets
of compounds: cluster analysis, dissimilarity-based methods, cell-based methods
and the use of optimisation techniques.

2. CLUSTER ANALYSIS

Cluster analysis aims to divide a group of objects into clusters so that the
objects within a cluster are similar but objects taken from different clusters
are dissimilar (Figure 6-1). Once a set of molecules has been clustered then a
representative subset can be chosen simply by selecting one (or more) compounds
from each cluster.

Cluster analysis is widely used in many diverse fields such as engineering,
medicine, the social sciences and astronomy and a large number of algorithms
have been devised [Aldenderfer and Blashfield 1984; Everitt 1993]. There is a
wide variation in the efficiency of the various clustering methods which means
that some algorithms may not be practical for handling the large data sets that are
often encountered in pharmaceutical and agrochemical applications. Here we will
focus on methods that are used to cluster databases of chemical structures [Willett
1987; Downs and Willett 1994; Dunbar 1997; Downs and Barnard 2002].

The key steps involved in cluster-based compound selection are as follows:

1. Generate descriptors for each compound in the data set.
2. Calculate the similarity or distance between all compounds in the data set.
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Figure 6-1. Clustering algorithms attempt to group together similar objects. A representative
object might then be chosen from each cluster (open circles).

3. Use a clustering algorithm to group the compounds within the data set.
4. Select a representative subset by selecting one (or more) compounds from

each cluster.

Cluster analysis is sometimes referred to as a distance-based approach to
compound selection since it requires a measure of the “distance” between pairs
of compounds. As explained in Chapter 5, this distance is often calculated as
1–S (S being the similarity coefficient) when molecules are represented by
binary descriptors, and by the Euclidean distance when they are represented
by physicochemical properties (or their scaled derivatives or a set of principal
components).

Most clustering methods are non-overlapping, that is, each object belongs to
just one cluster. Conversely, in overlapping methods an object can be present
in more than one cluster. The non-overlapping methods can be divided into two
classes: hierarchical and non-hierarchical.

2.1 Hierarchical Clustering

Hierarchical clustering methods organise compounds into clusters of
increasing size, with small clusters of related compounds being grouped together
into larger clusters: at one extreme each compound is in a separate cluster; at
the other extreme all the compounds are in one single cluster [Murtaugh 1983].
The relationships between the clusters can be visualised using a dendogram
(Figure 6-2).
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Figure 6-2. A dendrogram representing a hierarchical clustering of seven compounds.

Figure 6-3. Schematic illustration of the methods used by (from left) the single linkage, complete
linkage and group average approaches to calculate intercluster distances.

Agglomerative hierarchical clustering methods start at the bottom of the
dendogram (all compounds in separate clusters) and proceed by merging the most
similar clusters together in an iterative manner. Thus, in the first step the closest
two compounds are merged into a single cluster. In the next step, the closest two
clusters are merged and so on.

The most common agglomerative hierarchical methods are the so-called
Sequential Agglomerative Hierarchical Non-overlapping (SAHN) methods. These
differ in the way in which the distance or similarity between two clusters is
measured.

In the single linkage or nearest neighbour method the distance between a
pair of clusters is equal to the minimum distance between any two compounds,
one from each cluster. The complete linkage or furthest neighbour method is the
logical opposite of the single linkage method, insofar as intercluster distance is
measured by the distance between the furthest pair of compounds in a pair of
clusters. The group average method measures intercluster distance as the average
of the distances between all pairs of compounds in the two clusters. These three
methods are illustrated in Figure 6-3.
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In Ward’s method [Ward 1963] the clusters are formed so as to minimise the
total variance. The variance of a cluster is measured as the sum of the squared
deviations from the mean of the cluster. For a cluster, i , of Ni objects where each
object j is represented by a vector ri, j the mean (or centroid) of the cluster, r̄i is
given by:

r̄i = 1
Ni

Ni∑

j=1

ri, j (6.2)

and the intracluster variance is given by:

Ei =
Ni∑

j=1

(∣∣ri, j − r̄i
∣∣)2 (6.3)

The total variance is calculated as the sum of the intracluster variances for each
cluster. At each iteration, that pair of clusters is chosen whose merger leads to the
minimum change in total variance. Ward’s method is also known as the minimum
variance method.

Two additional agglomerative hierarchical clustering algorithms are the
centroid method, which determines the distance between two clusters as the
distance between their centroids, and the median method, which represents each
cluster by the coordinates of the median value.

All six hierarchical agglomerative methods can be represented by a single
equation, first proposed by Lance and Williams [1967]:

dk(i, j) = αi dki + α j dk j + βdi j + γ
∣∣dki − dkj

∣∣ (6.4)

dk(i, j) is the distance between point k and a point (i, j) formed by the merging of
the points i and j . The various methods differ only in the values of the coefficients:
αi , α j , β and γ . For example, the single linkage method corresponds to αi = α j =
0.5, β = 0 and γ = −0.5.

Divisive hierarchical clustering algorithms start with a single cluster that
contains all of the compounds (at the top of the dendogram) and progressively
partition the data. A potential advantage of such an approach is that in many
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cases only a relatively small number of clusters is desired and so only the first
part of the hierarchy needs to be produced. Divisive methods can be faster than
their agglomerative counterparts, but, as reported by Rubin and Willett [1983],
their performance is generally worse. This was ascribed to the fact that in the
divisive methods tested the criterion for partitioning a cluster is based on a single
descriptor (they are monothetic), in contrast to the agglomerative hierarchical
methods (which are polythetic). They are therefore not considered further here.

2.2 Selecting the Appropriate Number of Clusters

When using an hierarchical clustering method it is necessary to choose a level
from the hierarchy in order to define the number of clusters. This corresponds to
drawing an imaginary line across the dendrogram; the number of vertical lines that
it intersects equals the number of clusters (Figure 6-4).

One way to select the number of clusters is by examination of the dendrogram.
However, several automated cluster level selection methods have also been
devised. In order to compare different cluster selection methods it is necessary
to be able to compare the different cluster groupings obtained. This can be done
using the Jaccard statistic as shown below:

Jaccard(C1, C2) = a
a + b + c

(6.5)

Figure 6-4. Choosing the level from the hierarchy defines the number of clusters present (in this
case, four clusters).
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where C1 and C2 are two different clusterings; a is the number of compounds
that are clustered together in both clusterings; b is the number of compounds that
cluster together in the first clustering but not the second; and c is the number of
compounds that cluster together in the second clustering but not the first. Note that
the Jaccard statistic is identical to the Tanimoto coefficient introduced in Chapter 5.

Wild and Blankley [2000] compared the effectiveness of nine different cluster
selection methods using Ward’s clustering applied to seven different data sets. Four
different 2D binary descriptors were used: MACCS keys; Daylight fingerprints;
UNITY fingerprints; and BCI fragments. The optimal clustering was chosen
using each selection method and compared to the “ideal” clustering, which
was established by manual clustering. The results showed that although no one
approach consistently performed well across all data sets, a method proposed by
Kelley et al. [1996] was found to work well with the fragment-based methods
(MACCS and BCI) whereas a method termed the Variance Ratio Criterion (VRC)
worked well with the fingerprint methods (Daylight and UNITY).

The method of Kelley et al. [1996] aims to achieve a balance between the
tightness of the clusters at a particular level with the number of clusters at that
level. If the number of clusters at a particular level l is kl then the Kelley measure
is given by:

KELLEYl = (N − 2)

( 〈dwl〉 − min (〈dw〉)
max (〈dw〉) − min (〈dw〉)

)
+ 1 + kl (6.6)

where 〈dwl〉 is the mean of the distances between objects in the same cluster at
level l , and min(〈dw〉) and max(〈dw〉) are the minimum and maximum values of
this property across all cluster levels. N is the total number of points in the data
set. The optimal level corresponds to the smallest value of the Kelley measure.

The VRC compares the distances between objects within the same cluster with
the distances between objects in different clusters [Calinski and Harabasz 1974].
It is defined as:

VRCl = B/kl − 1
W/N − kl

(6.7)

where B is the sum of squares of distances between objects in different clusters
and W is the sum of squares of distances between objects in the same cluster.
An optimal number of clusters corresponds to either a local or a global maximum
in the function.



126 An Introduction to Chemoinformatics

2.3 Non-Hierarchical Clustering

In non-hierarchical clustering methods compounds are placed in clusters
without forming an hierarchical relationship between the clusters. A variety of
non-hierarchical clustering methods exist, examples of methods used in chemical
applications include the single-pass; relocation; and nearest neighbour methods.

As the name implies, single-pass methods cluster objects using just a single
pass through the data set. The first compound encountered is assigned to the first
cluster. The next compound is also assigned to this cluster if its similarity exceeds
some threshold value, otherwise it is assigned to a new cluster. The process
continues until all compounds have been assigned to clusters. The method is fast
in operation but its main drawback is that it is order dependent; if the compounds
are reordered and then reclustered a different clustering will result.

Several nearest neighbour clustering methods exist, but the method historically
used for chemical applications is Jarvis–Patrick clustering [Jarvis and Patrick
1973]. In this method, the nearest neighbours of each compound are found by
calculating all pairwise similarities and sorting according to this similarity. The
compounds are then clustered according to the number of neighbours they have in
common; two compounds are placed into the same cluster if:

1. They are in each other’s list of m nearest neighbours.
2. They have p (where p < m) nearest neighbours in common. Typical values

of m and p are 14 and 8, respectively.

A drawback of Jarvis–Patrick clustering is that it can lead to large disparate
clusters and many singletons (clusters containing just a single molecule; of the
four clusters in Figure 6-4 one is a singleton). Several modifications have been
proposed to improve the effectiveness of the Jarvis–Patrick method. For example,
the position of each compound within the neighbour list can be taken into account
instead of simply the number of nearest neighbours. In addition, it is possible
to specify that a molecule’s nearest neighbours must be within some threshold
distance. This ensures that the nearest neighbours of each compound are not too
dissimilar.

The K -means method is an example of a relocation clustering method [Forgy
1965]. Here, the first step is to choose a set of c “seed” compounds. These
are usually selected at random. The remaining compounds are assigned to the
nearest seed to give an initial set of c clusters. The centroids of the clusters
are then calculated and the objects are reassigned (or relocated) to the nearest
cluster centroid. This process of calculating cluster centroids and relocating the
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compounds is repeated until no objects change clusters, or until a user-defined
number of iterations has taken place. It is dependent upon the initial set of cluster
centroids and different results will usually be found for different initial seeds
[Milligan 1980].

2.4 Efficiency and Effectiveness of Clustering Methods

The efficiency of the various clustering approaches varies enormously. Some
methods are not suitable for handling large data sets. All the SAHN methods
can be implemented using a stored matrix approach in which an initial (N × N )

intercompound similarity matrix is first calculated and then progressively updated
as new clusters are formed. However this approach requires storage (or memory)
space proportional to N 2 (written O(N 2)) and the time to perform the clustering is
proportional to N 3 (O(N 3)). This severely limits the applicability of these methods
for clustering large data sets. A fast implementation of the Ward’s method can
be achieved by identifying all Reciprocal Nearest Neighbours (RNNs) [Murtaugh
1983]. These are pairs of objects which are mutual nearest neighbours (i.e. A is
the closest object to B and vice versa). The RNN approach has space and time
complexities of O(N ) and O(N 2), respectively. The most computationally efficient
of the non-hierarchical methods have a time complexity of O(M N ) where M is the
number of clusters generated. They are therefore very much faster than the SAHN
methods. The Jarvis–Patrick method is relatively fast, having complexity O(N 2)

for the calculation of the nearest neighbour lists but with a much smaller constant
of proportionality than the RNN version of Ward’s clustering. It has historically
been used to cluster very large data sets which may be too large for any of the
hierarchical methods to handle.

Various clustering methods have been compared in a number of studies. Downs
et al. [1994] compared three hierarchical clustering methods (the group average
and Ward’s agglomerative methods and a divisive method) and the Jarvis–Patrick
non-hierarchical method in a property prediction experiment. Each compound
in the data set was described by 13 properties; the objective was to determine
how well each of the different clustering methods was able to predict these
property values. The data set was clustered using each method with the property
value for each compound being predicted as the mean of the property values
for the other compounds in the same cluster. The predicted values for each
molecule were compared with the actual values to give a score for each cluster
method. The outcome of this study was that the hierarchical methods performed
significantly better than the non-hierarchical Jarvis–Patrick method in terms of
their predictive ability. Interestingly, the divisive method tested (the polythetic
Guenoche algorithm [Guenoche et al. 1991]) was found to be rather effective in
this particular case.
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Brown and Martin [1996] examined a variety of clustering methods together
with several structural descriptors including structural keys, fingerprints and
pharmacophore keys. The methods were evaluated according to their ability to
separate a set of molecules so that active and inactive compounds were in different
clusters. Four different data sets were considered. They found that a combination
of 2D descriptors (particularly the structural keys) and hierarchical clustering
methods were most successful. Bayada et al. [1999] also found Ward’s clustering
and 2D descriptors (this time using BCI fingerprints [BCI]) to be the most effective
of a number of methods used to identify a subset of bioactive compounds.

Finally, it is important to bear in mind that in addition to the differences
between clustering algorithms the performance of a cluster analysis also depends
critically on the descriptors and similarity or distance coefficient used to calculate
the distances between the objects in the data set.

3. DISSIMILARITY-BASED SELECTION METHODS

Clustering is a two step process; first the actual clustering is performed
following which a subset is chosen (e.g. by selecting the compound closest to the
cluster centroid). Dissimilarity-based compound selection (DBCS) methods, by
contrast, attempt to identify a diverse set of compounds directly. They are based on
calculating distances or dissimilarities between compounds. The basic algorithm
for DBCS is outlined below [Lajiness 1990]:

1. Select a compound and place it in the subset.
2. Calculate the dissimilarity between each compound remaining in the data

set and the compounds in the subset.
3. Choose the next compound as that which is most dissimilar to the

compounds in the subset.
4. If there are fewer than n compounds in the subset (n being the desired size

of the final subset), return to step 2.

Steps 2 and 3 of the basic algorithm are repeated until the subset is of the required
size. There are many variants on this basic algorithm; these differ in the way in
which step 1 and step 3 are implemented (i.e. in the method used to choose the
first compound and in the way in which the dissimilarity between each compound
remaining in the data set and the compounds already placed in the subset is
measured). To illustrate the procedure, the selection of five “diverse” compounds
from a data set within a hypothetical 2D property space is shown in Figure 6-5.
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Figure 6-5. Illustration of a dissimiliarity-based compound selection in which five compounds
are selected from a large set.

Three possible ways to select the initial compound are:

1. Select it at random.
2. Choose the molecule which is “most representative” (e.g. has the largest

sum of similarities to the other molecules).
3. Choose the molecule which is “most dissimilar” (e.g. has the smallest sum

of similarities to the other molecules).

The implementation of step 3 requires the dissimilarity values between each
molecule remaining in the database and those already placed in the subset to be
calculated. The most commonly used methods are MaxSum and MaxMin [Snarey
et al. 1997]. If there are m molecules in the subset then the scores for a molecule i
using these two measures are given by:

MaxSum : scorei =
m∑

j=1

Di, j (6.8)

MaxMin : scorei = minimum
(
Di, j; j=1,m

)
(6.9)

where Di, j is the distance between two individual molecules i and j . The molecule
i that has the largest value of scorei is the one chosen. Thus MaxSum chooses
the compound with the maximum sum of distances to all compounds in subset,
whereas MaxMin chooses the compound with the maximum distance to its closest
neighbour in the subset.

The MaxMin and MaxSum definitions are analogous to the single-linkage
and group-average hierarchical agglomerative clustering methods respectively. A
useful modification of these two methods is to reject any compound that is too
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similar to one already chosen using some threshold similarity prior to selecting
the next compound.

The sphere exclusion algorithm [Hudson et al. 1996] is closely related to the
DBCS algorithms. The basic sphere exclusion algorithm is as follows:

1. Define a threshold dissimilarity, t .
2. Select a compound and place it in the subset.
3. Remove all molecules from the data set that have a dissimilarity to the

selected molecule of less than t .
4. Return to step 2 if there are molecules remaining in data set.

The first compound is selected for inclusion in the subset. Next, all compounds in
the database that are within the similarity threshold to the selected compound are
removed from consideration. This is analogous to enclosing the compound within
a hypersphere of radius t and removing all compounds from the data set that fall
within the sphere. Steps 2 and 3 are repeated until no further compounds remain in
the data set. Again, several variants of the algorithm exist; these differ in the way
in which the first compound is selected, in the threshold value used and in the way
the “next” compound is selected in each iteration. For example, compounds can
be selected at random; this is very fast in operation but the random element results
in non-deterministic solutions, with different results being obtained for different
runs on the same data set. Alternatively, the next compound can be selected so that
it is “least dissimilar” to those already selected; Hudson et al. [1996] suggest the
use of a MinMax-like method, where the molecule with the smallest maximum
dissimilarity with the current subset is selected.

The relationship between the DBCS methods and sphere-exclusion algorithms
is explored in the Optimizable K-Dissimilarity Selection (OptiSim) program
[Clark 1997; Clark and Langton 1998]. OptiSim makes use of an intermediate
pool of molecules, here called Sample. In order to identify the next compound to
add to the final subset, molecules are chosen at random from the data set and added
to Sample if they have a dissimilarity greater than t from those already in the final
subset; otherwise they are discarded. When the number of molecules in Sample
reaches some user-defined number, K , then the “best” molecule from Sample is
added to the final subset (the “best” molecule being that which is most dissimilar
to those already in the final subset). The remaining K −1 compounds from Sample
are then set aside but may be reconsidered should the main set run out before the
subset reaches the desired size. The process then repeats. The characteristics of the
final subset of selected molecules are determined by the value of K chosen, with
values of K equal to 1 and to N corresponding to sphere-exclusion and DBCS
respectively.
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3.1 Efficiency and Effectiveness of DBCS Methods

The basic DBCS algorithm has an expected time complexity of O(n2 N), where
n is the number of compounds that one wishes to select from N . As n is generally
a small fraction of N (such as 1% or 5%) this gives a running time that is cubic
in N , which makes it extremely demanding of computational resources if the
data set is large. Holliday et al. [1995] described a fast implementation of the
MaxSum algorithm of complexity O(nN ) that enables the dissimilarity between a
compound and a subset to be computed in a single operation rather than having to
loop over all molecules currently in the subset.

The MaxMin dissimilarity definition is not normally as fast in practice as
MaxSum, but it too can be implemented with time complexity of O(nN ). In fact,
since MaxMin is based on identifying nearest neighbours, it is possible to use the
extensive work that has been carried out on fast algorithms for nearest neighbour
searching in low-dimensional spaces. Agrafiotis and Lobanov [1999] have used
one such approach, based on k–d trees, to obtain a MaxMin algorithm with a time
complexity of only O(n log N ).

A schematic illustration of the behaviour of the MaxSum, MaxMin and sphere
exclusion methods is given in Figure 6-6 for a 2D descriptor space. If the “most
dissimilar” compound is chosen as the first molecule in the DBCS methods then
the MaxSum method tends to select closely related compounds at the extremities
of the distribution [Agrafiotis and Lobanov 1999; Mount et al. 1999; Snarey et al.
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Figure 6-6. Schematic comparison of various dissimilarity selection methods. (Redrawn from
Leach 2001.)
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1997]. This is also the initial behaviour of the MaxMin approach which then starts
to sample from the middle. Sphere exclusion methods typically start somewhere in
the middle of the distribution and work outwards. The DBCS results are typically
more diverse than those resulting from the sphere-exclusion approach, the latter
being more likely to give a subset that is representative of the original data set.

In their work Snarey et al. [1997] examined the extent to which the methods
were able to identify subsets of compounds from the WDI [WDI] with a
wide range of biological activities. This database includes compounds from
many different classes of biological activity (e.g. antibiotics, antihistamines,
analgesics); the various subsets selected were scored according to the number of
distinct activity classes present. The more activity classes selected the “better”
the performance of the algorithm. The molecules were represented by hashed
fingerprints or by a series of topological indices and physical properties and the
dissimilarities, (Di j in equations 6.8 and 6.9) were measured by the complement
of either the Tanimoto or the cosine coefficient. The results suggested that there
was relatively little to choose between the best of these methods (though some
proved significantly worse than a random selection) but the MaxMin maximum-
dissimilarity algorithm was generally considered to be both effective and efficient.

4. CELL-BASED METHODS

Clustering and DBCS are sometimes referred to as distance-based methods
since they involve the calculation of pairwise distances (or similarities) between
molecules. The results are thus dependent upon the particular set of molecules
being examined. Cell-based or partitioning methods, by contrast, operate within
a predefined low-dimensional chemistry space [Mason et al. 1994]. Each property
is plotted along a separate orthogonal axis and is divided into a series of value
ranges to give a series of “bins”. The combinatorial product of these bins for all
the properties then defines a set of cells that covers the space. A simple example is
shown in Figure 6-7 for a 2D space based on molecular weight and log P . In this
case each property is divided into four bins. Worthy of note is that the bins do not
need to be equal in size, and that some properties can (in theory at least) cover
an infinite range (e.g. “MW > 750”) [Bayley and Willett 1999]. If there are N
axes, or properties, and each is divided into bi bins then the number of cells in the
multidimensional space is:

Number of cells =
N∏

i=1

bi (6.10)
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Figure 6-7. The construction of a 2D chemistry space. In this case the log P bins are <0, 0–3,
3–7 and >7 and the MW bins are 0–250, 250–500, 500–750 and >750.

Compounds are allocated to cells according to their molecular properties.
Partitioning is a two-stage process, like clustering; once compounds have been
allocated to the cells then a representative subset can be selected by choosing one
or more compounds from each cell.

A key feature of cell-based methods is that they do not require the calculation
of pairwise distances between the compounds; the chemistry space is defined
independently of the molecules that are positioned within it. This offers two key
advantages. First, empty cells (voids) or cells with low occupancy can be readily
identified; these indicate regions of the space that are under-represented. Second,
the diversity of different subsets can be easily compared by examining the overlap
in the cells occupied by each subset. Neither of these features is straightforward to
achieve using clustering or DBCS. An alternative to the simple diversity measure
that involves counting the number of occupied cells is the following χ2 statistic
[Waldman et al. 2000]:

Dχ2 = −
Ncells∑

i=1

(
Ni − Nsel

Ncells

)2

(6.11)

where Ni is the number of molecules in cell i , Nsel is the number of molecules in
the selected subset and Ncells is the total number of cells in the space. This metric
tends to favour a uniform distribution of molecules throughout the space. A third
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alternative is the following entropy-based function, which achieves a balance
between the uniform distribution and maximising cell occupancies:

Dentropy = −
Ncells∑

i=1

Ni

Nsel
ln
(

Ni

Nsel

)
(6.12)

A further advantage of cell-based methods is that they are very fast with a time
complexity of just O(N) and hence they can be applied to very large data sets.

The main drawback with cell-based methods is that they are restricted to a
relatively low-dimensional space since the number of cells increases exponentially
with the number of dimensions N . It is therefore necessary to ensure that a small
number of relevant descriptors are selected. Thus it is inappropriate to base the
axes on the bits in a bitstring, such as a structural key or hashed fingerprint; for
a bitstring of length n the number of cells would be 2n . For typical bitstrings
this would give an impossibly large number of cells (e.g. 21024 for a 1,024-
bit bitstring), almost all of which would be empty. Also the cell boundaries are
somewhat arbitrary and moving the boundaries, even by a small amount, can have
a significant impact on the compounds selected.

One of the first approaches to partitioning was described by Lewis et al. [1997].
The aim was to develop a partitioning scheme based on physiochemical properties
considered important for both drug-receptor binding and for the transport of a drug
to its target. Following a statistical analysis of nearly 50 descriptors, they identified
six that were weakly correlated and that covered properties such as hydrophobicity,
polarity, shape, hydrogen bonding properties and aromatic interactions. Each
descriptor was split into two, three or four partitions giving a grand total of 576
cells. When a subset of the corporate database consisting of 150,000 molecules
was mapped onto the space 86% of the defined cells were occupied. Some of the
cells were not occupied since they represent combinations of properties that are
unlikely to exist, for example, a hydrophobic molecule having a large number of
hydrogen bonding groups. A representative set of compounds designed to act as a
small diverse screening set was then identified by choosing three compounds from
each occupied cell.

The BCUT descriptors were developed by Pearlman and Smith [1998] for
the purposes of providing a low-dimensional chemistry space. As described in
Chapter 3, BCUTs are based on matrix representations of molecules whereby atomic
properties suchasatomiccharges,polarisabilitiesandhydrogenbondingcapabilities
are used for the diagonal elements and various connectivity representations are
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used for the off-diagonal elements. Consideration of three atomic properties gives
rise to three different matrices with the highest and lowest eigenvalues providing
six descriptors to form the axes of the partitioned space. However, as indicated
in Chapter 3, many variants on these matrices are possible. For example, the
off-diagonal elements can be derived from the bonding information in the 2D
graph or from interatomic distances from a 3D conformation. Moreover, different
methods can be used to calculate the diagonal elements (e.g. alternative methods
to calculate atomic charges). This can result in a large number of potential choices
for the axes of the partitioned chemistry space. Pearlman and Smith [1999] have
therefore developed methods for selecting the most appropriate set of axes, to
ensure that the compounds are as uniformly distributed in the space as possible.

A high-dimensional descriptor space can be reduced to a low-dimensional
space appropriate for partitioning by using a technique such as PCA (discussed
in Chapter 3). This results in a small set of orthogonal axes with each axis
corresponding to a linear combination of the original descriptors. Such an
approach was used in a comparative study of various chemical databases
[Cummins et al. 1996]. The initial descriptors comprised the computed free energy
of solvation of each molecule together with a large number of topological indices.
Following the removal of highly correlated descriptors and descriptors that showed
little variation, factor analysis was applied. This is a technique similar in spirit to
PCA and it resulted in four factors that explained 90% of the variation in the data.
The 4D space was partitioned into cells and molecules from five databases were
projected into the space. Most of the molecules were found to occupy a relatively
small region of the space and so an iterative procedure was used to remove
outliers, thereby enabling the resolution to be increased in the area populated by
the majority of the molecules. The databases were then compared two at a time
by counting how many cells they had in common. It was of particular interest
to identify the regions of space occupied by those databases that contain solely
biologically active molecules, and to see whether this space was different to that
occupied by the more general databases.

4.1 Partitioning Using Pharmacophore Keys

3D-pharmacophore descriptors can be used to provide a partitioned space.
Here, each potential 3- or 4-point pharmacophore is considered to constitute a
single cell. A molecule can be mapped onto the space by identifying the 3- or 4-
point pharmacophores that it contains. Unlike the partitioning schemes described
above that are based on whole molecule properties in which each molecule
occupies a single cell, in pharmacophore partitioning a molecule will typically
occupy more than one cell since almost all molecules will contain more than one
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3- or 4-point pharmacophore. The pharmacophore keys for a set of molecules
can also be combined into an ensemble pharmacophore which is the union of the
individual keys. The ensemble can then be used to measure total pharmacophore
coverage to identify pharmacophores that are not represented and to compare
different sets of molecules.

One of the earliest programs to use pharmacophore keys to select a diverse
set of compounds was the simple order-dependent algorithm implemented within
the Chem-Diverse software [Davies 1996]. The goal was to select subsets
of compounds that would maximise the total pharmacophore coverage. The
pharmacophore key is generated for the first molecule in the database. This
becomes the ensemble pharmacophore. The pharmacophore key for the next
molecule in the list is then generated and compared with the ensemble. If the new
molecule covers some amount of pharmacophore space not yet represented in the
ensemble, then it is added to the subset and the ensemble is updated, otherwise the
molecule is rejected. The procedure continues until sufficient molecules have been
generated or the ensemble pharmacophore has become saturated.

This approach does suffer from some limitations. For example, the ensemble
only records the presence or absence of a particular pharmacophore and does not
take into account the frequency of occurrence. No account is taken of promiscuous
molecules (molecules that contain a large number of pharmacophores, often very
flexible molecules). Subsequent approaches have addressed these problems and
have also enabled additional properties to be taken into account when selecting a
subset or designing libraries [Good and Lewis 1997].

5. OPTIMISATION METHODS

As indicated in the introduction, only for the smallest of systems is it possible
to contemplate a systematic evaluation of all possible subsets. Many of the
methods that we have discussed so far for selecting a diverse subset involve
procedures that iteratively select one molecule at a time. An alternative is use some
form of optimisation procedure. Optimisation techniques provide effective ways of
sampling large search spaces and several of these methods have been applied to
compound selection. One of the first published methods was that of Martin et al.
[1995] who used D-optimal design. As outlined in Chapter 4 this is a statistical
experimental design technique that aims to produce a subset of compounds that
is evenly spread in property space. However, the technique is somewhat prone to
selecting outliers as well as molecules that are very similar to each other.
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Many approaches are based on Monte Carlo search, often with simulated
annealing [Hassan et al. 1996; Agrafiotis 1997]. An initial subset is chosen at
random and its diversity is calculated. A new subset is then generated from the
first by replacing some of the compounds with others chosen at random from
the data set. The diversity of the new subset is measured; if this leads to an
increase in the diversity function then the new subset is accepted for use in the
next iteration. If the new subset is less diverse, then the probability that it is
accepted depends on the Metropolis condition, exp[−	E/kBT], where 	E is the
difference between the current and previous diversity values (see Chapter 2 for
more details). The process continues for a fixed number of iterations or until
no further improvement is observed in the diversity function. In the simulated
annealing variant the temperature of the system is gradually reduced, so increasing
the chance of finding the globally optimal solution.

Typical diversity functions used in such procedures include MaxMin and
MaxSum; however, there continues to be interest in the development of new
measures of molecular diversity. Introducing a new function, Waldman et al.
[2000] suggested five requirements that a diversity function should possess:

1. The addition of a redundant molecule (i.e. one that has the same set of
the descriptors as an existing molecule in the set) should not change the
diversity.

2. The addition of non-redundant molecules should always increase the
diversity.

3. The function should favour space-filling behaviour, with larger increases
in the function for filling large voids in the space rather than filling more
heavily populated regions.

4. If the descriptor space is finite, then filling it with an infinite number of
molecules should give a finite value for the diversity function.

5. As one molecule is moved further away from the others then the diversity
should increase, but it should asymptotically approach a constant value.

The approach proposed by Waldman was based on the overlap of Gaussian
functions. The overlap is calculated by computing the minimum spanning tree
for the set of molecules. A spanning tree is a set of edges that connect a set of
objects without forming any cycles. The objects in this method are the molecules
in the subset and each edge is labelled by the dissimilarity between the two
molecules it connects. A minimum spanning tree is the spanning tree that connects
all molecules in the subset with the minimum sum of pairwise dissimilarities,
Figure 6-8. The diversity then equals the sum of the intermolecular similarities
along the edges in the minimum spanning tree.
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Figure 6-8. Illustration of a minimum spanning tree for a simple 2D system.

The computational requirements of the optimisation methods are dependent
on the diversity function used since the function is typically applied very many
times during the optimisation process. Thus, efficient operation of these methods
requires diversity functions that are rapid to calculate.

6. COMPARISON AND EVALUATION OF SELECTION
METHODS

Given the different compound selection methods and the many different
descriptors that are available it is natural to consider which methods are most
appropriate [Willett 1999]. The aim when selecting diverse subsets is to minimise
the number of compounds that share the same activity whilst maximising the
coverage of different bioactivity types. Several studies have attempted to evaluate
the various “rational” approaches to compound selection according to their ability
to extract compounds with known activities from within larger data sets.

Some of these studies have suggested that the rational methods are no
better than random at selecting bioactive molecules. For example, Taylor [1995]
compared cluster and dissimilarity-based selection in a simulation experiment and
concluded that cluster-based selection was only marginally better than random
and that dissimilarity-based selection was worse than random. However, other
studies have found the converse. For example, Lajiness [1991] determined that
both cluster-based and dissimilarity-based compound selection methods were
better than random. Bayada et al. [1999] compared the MaxMin DBCS with
Ward’s clustering, partitioning and a Kohonen mapping method (Kohonen maps
are discussed in Chapter 7) and found that Ward’s clustering was superior to
the other methods. Pötter and Matter [1998] compared DBCS and hierarchical
clustering with random selection methods and found the DBCS methods to be
more effective than the random selections. The comparison of DBCS and sphere
exclusion methods by Snarey et al. [1997] has already been mentioned.
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The selection of diverse subsets is based on the premise that structural
similarity is related to similarity in biological activity space. Brown and Martin
[1996] in their clustering experiments concluded that compounds within 0.85
Tanimoto similarity (calculated using UNITY fingerprints) have an 80% chance
of sharing the same activity. These results were used to guide the selection of
compounds from external suppliers such that no molecule within 0.85 similarity
of any compound already present in the screening set was purchased. In a
comparison of 2D and 3D descriptors Matter and Pötter [1999] also confirmed
the 0.85 similarity threshold for UNITY fingerprints and the Tanimoto coefficient.
However, recent work by Martin et al. [2002] has shown that the relationship
between structural similarity and biological activity similarity may not be so
strong as these previous studies suggested. They found that a molecule within
0.85 similarity of an active compound had only a 30% chance of also being active.
Nevertheless, the enrichments achieved were still significantly better than random.
Thus, it was suggested that a screening library should contain some number of
similar compounds while still maintaining its diversity.

7. SUMMARY

The four main approaches to selecting diverse subsets of compounds have
been described; clustering, dissimilarity-based methods, cell-based methods and
optimisation techniques. To date, there is no clear consensus as to which method
is the best. When choosing which method or methods to apply several criteria
should be taken into account. First, it should be noted that the choice of subset
selection method and the descriptors employed are interrelated. Some subset
selection methods can be used with high-dimensionality descriptors such as binary
fingerprints (e.g. clustering and DBCS methods) whereas cell-based methods can
only be used with low-dimensionality data, or with data that has been subjected to
some form of dimensionality reduction. Second, the relative efficiencies of the
various approaches is a factor for consideration and the more computationally
demanding methods such as clustering may be restricted to smaller data sets
(though fast implementation methods and the introduction of parallel clustering
algorithms means that this is becoming less of a restriction). The computational
requirements of the optimisation methods are typically determined by the speed of
the fitness function, since this is calculated very frequently throughout the search.
Finally, it is important that the descriptors used are relevant to biological activity;
some pre-analysis of the data should be carried out in order to ensure that an
appropriate set of descriptors is chosen.





Chapter 7

ANALYSIS OF HIGH-THROUGHPUT
SCREENING DATA

1. INTRODUCTION

Robotic and miniaturisation techniques now make it possible to screen large
numbers of compounds very efficiently. Current HTS systems enable hundreds
of thousands of compounds to be assayed in only a few days [Hertzberg and
Pope 2000]. HTS runs can generate immense volumes of data for analysis.
In most current systems the data obtained from HTS comprises “single-shot”
percentage inhibition data derived by measuring the activity of each sample at
one predetermined concentration. The data set is then analysed to identify a
subset of compounds that are progressed to the next stage, in which a more
comprehensive measure of the inhibition is determined. A common procedure is to
determine a dose–response curve by measuring activity at different concentrations,
from which an IC50 value can be determined (the IC50 is the concentration of
inhibitor required to reduce the binding of a ligand or the rate of reaction by 50%).
Depending on the numbers involved, these assays may be performed using pre-
dissolved liquid samples; to provide final confirmation a dose–response curve is
determined from a solid sample whose purity is also checked. If the sample is pure
and the compound is deemed to be of interest then elaboration of the structure
using chemical synthesis may commence (often referred to as the “hits-to-leads”
phase). Analysis of the data resulting from one HTS run can also be used to design
new compounds to screen in a subsequent iteration of the drug discovery cycle.
The entire process is illustrated in Figure 7-1; key to our discussion is that at each
stage it is necessary to analyse the relevant data and to select which compounds to
progress to the next stage.

The simplest way to deal with the output from HTS is to select the most potent
compounds to progress to the next stage, the number selected being determined
by the throughput of the subsequent assay. However, such an approach may not
necessarily result in the most useful structures being selected for progression.
Some molecules may contain functional groups that cause interference in the assay
(e.g. fluorescent compounds); other molecules may contain functional groups that
are known to react with biological systems. Both these situations may give rise to
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Figure 7-1. A schematic illustration of the process used to progress the initial hits from an HTS
run through to synthetic chemistry. QC stands for Quality Control, a procedure to determine the
purity and integrity of the sample using one or more analytical techniques.

misleading data values. However, such compounds can often be readily identified
and eliminated if necessary using simple substructure and “drug-likeness” filters;
these will be considered in more detail in Chapter 8. Other compounds may
simply be unattractive starting points for chemical elaboration. There can be
significant noise in the biological data which means that, particularly for single-
shot data, the measured activity may not be an accurate quantitative indication of
the true biological activity. In some cases individual compounds may appear to
be particularly potent but closely related analogues may have no activity. Some
of these scenarios are illustrated in Figure 7-2. For these and other reasons it is
therefore desirable to be able to analyse the data from HTS in order to identify the
best samples to progress, with the ultimate goal being to identify as many potential
lead series as possible.

It might be considered that the statistical methods described in Chapter 4 could
be applied to the analysis of HTS data. Unfortunately, the nature of the data means
that methods such as multiple linear regression or PLS are not applicable. Such
methods work best with small data sets containing high-quality data, and where
the compounds are from the same chemical series (or at least are closely related to
each other and operate by the same biological mechanism). HTS data by contrast
is characterised by its high volume, by its greater level of noise, by the diverse
nature of the chemical classes involved and by the possible presence of multiple
binding modes.



Analysis of High-Throughput Screening Data 143

A
ct

iv
it
y

Chemically 
tractable series

Structural Descriptor

SingletonChemically 
intractable 
series

cutoff

Figure 7-2. Schematic illustration of the way in which the biological activity measured in an
HTS run may vary with the chemical structure. The diagram shows a potent but chemically
intractable series (in addition, this set of compounds shows greater fluctuations in activity), a
highly potent but isolated compound (singleton), and two tractable series, one of which may be
missed by the application of a simple activity cut-off.

The remainder of this chapter will be concerned with a description of some of the
methods that can be used for the analysis of HTS data [Gedeck and Willett 2001;
Bajorath 2002]. The focus will be on methods that are applicable to large,
structurally diverse sets of compounds. This includes data visualisation and data
reduction techniques. When activity data is available then one may wish to
determine relationships between the chemical structure and the observed activity
using data mining techniques. It should also be noted that most of the techniques
discussed here can also be applied to smaller data sets.

2. DATA VISUALISATION

One of the most important aspects of data analysis is visualisation. Molecular
graphics packages for the display of the results of computational chemistry
calculations have been available for many years. However, most of these
are concerned with the display of the 3D structures and conformationally
dependent properties of single systems (albeit very complex ones such as protein–
ligand complexes). By contrast, the need in chemoinformatics is often for the
simultaneous display of large data sets containing many thousands of molecules
and their properties. Several packages are now available for the graphical
display of large data sets; the facilities provided by such packages typically
include the capability to draw various kinds of graphs, to colour according to
selected properties and to calculate simple statistics. Some of this software is



144 An Introduction to Chemoinformatics

Figure 7-3. Graphical representation of the property distributions of active (large spheres),
moderately active (medium spheres) and inactive (small spheres) compounds from the NCI
AIDS data set [NCI] using Spotfire [Spotfire; Ahlberg 1999].

designed specifically for the chemical domain; other programs are applicable
to many different types of data. By way of illustration, Figure 7-3 shows a set
of approximately 300 active and 900 moderately active compounds from the
National Cancer Institute (NCI) AIDS antiviral screen [NCI], together with about
38,000 inactive structures. These have been plotted according to three properties
(molecular weight, ClogP and the number of rotatable bonds). One feature that
is often very useful for the analysis of chemical data sets is the ability to
display and manipulate selected chemical structures (e.g. to interactively perform
a substructure search to identify all compounds containing a particular feature).

HTS data sets are often so large that it may help to divide the molecules into
subsets in order to help navigation through the data. This can be achieved either
using unsupervised methods that do not use the activity data or supervised methods
that do use the activity data. In this section we will consider methods in the former
category; supervised approaches are discussed in Section 3.

Perhaps the simplest strategy is to use a technique such as cluster analysis to
divide the structures into groups of structurally similar molecules or molecules
that have similar properties. One may then, for example, calculate the mean
activity of each cluster and use this to identify any clusters where the mean
activity is significantly above the average activity for the entire data set for further
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investigation. The cell-based methods described in Chapter 6 may also be used;
certain cells of the chemical space may contain a greater proportion of active
molecules. Another approach is to use predefined sets of substructures which
then form the basis for data visualisation and navigation [Roberts et al. 2000].
By choosing substructures that are “meaningful” to a medicinal chemist it may be
possible to rapidly identify specific classes of molecules to investigate further.

2.1 Non-Linear Mapping

It is common practice to compute molecular descriptors that might be useful
for understanding and explaining the relationship between the chemical structure
and the observed activity. These descriptors may include various physicochemical
properties, fingerprints, the presence of substructural fragments, and any known
activity against related targets. HTS data sets are thus usually multidimensional
in nature. In order to visualise a multidimensional data set it often helps to
map it to a lower 2D or 3D space. This process is usually referred to as non-
linear mapping the objective of which is to reproduce the distances in the higher-
dimensional space in the low-dimensional one. It is often particularly desirable
that objects close together in the high-dimensional space are close together in the
low-dimensional space. Having reduced the data set to 2D or 3D one may then
use graphics or other visual cues to identify structure–activity relationships, for
example by colouring the data points according to the biological activity.

A commonly used procedure for non-linear mapping is multidimensional
scaling [Kruskal 1964; Cox and Cox 1994]. There are two stages involved. First,
an initial set of coordinates is generated in the low-dimensional space. This may
be achieved in a number of ways, for example by using principal components
analysis or simply by generating a set of random coordinates. In the second
phase these coordinates are modified using a mathematical optimisation procedure
that improves the correspondence between the distances in the low-dimensional
space and the original multidimensional space. To achieve this the optimisation
procedure uses an objective function, a common function being Kruskal’s stress:

S =

N∑
i< j

(
di j − Di j

)2

N∑
i< j

d2
i j

(7.1)

where di j is the distance between the two objects i and j in the low-dimensional
space and Di j is the corresponding distance in the original multidimensional



146 An Introduction to Chemoinformatics

space. The summations are over all pairs of distances for the N points in the data
set. The optimisation continues until the value of the stress function falls below a
threshold value.

An alternative function used in Sammon mapping [Sammon 1969] is the
following:

S =

N∑
i< j

(
di j − Di j

)2

Di j

N∑
i< j

Di j

(7.2)

The key difference between the Kruskal and the Sammon functions is that
the latter places more emphasis on the smaller distances due to the presence of
the normalisation term. This can be observed in the simple example shown in
Figure 7-4. The main drawback of the two methods as originally devised is that
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Figure 7-4. Simple illustration of the difference between Kruskal and Sammon functions for
non-linear mapping. A rectangular box with sides of length 1, 1 and 10 (left) was mapped into
2D using both the Kruskal (top graph) and Sammon (bottom graph) stress functions. As can
be seen, the Sammon function tends to preserve the shorter distances better than the Kruskal
function.
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they scale with the square of the number of points, making their application to large
data sets problematic. This is primarily due to the limitations of the optimisation
procedure. Several solutions that overcome this limitation have been devised [Xie
et al. 2000; Agrafiotis and Lobanov 2000], making it possible to apply these
techniques to data sets containing tens of thousands of data points.

3. DATA MINING METHODS

Data mining techniques are now widely used to identify relationships in large,
multidimensional data sets in many areas and the analysis of HTS data is no
exception. A key objective of such an analysis is the construction of models
that enable relationships to be identified between the chemical structure and the
observed activity. As indicated above, traditional QSAR methods such as multiple
linear regression are not generally applicable and so alternative techniques have
been investigated. It is often more appropriate for HTS data sets to classify the
molecules as “active” or “inactive” or into a small number of activity classes (e.g.
“high”, “medium”, “low”) rather than using the numerical activity. The aim is to
derive a computational model that enables the activity class of new structures to be
predicted. For example, the model could be used to select additional compounds
for testing, to design combinatorial libraries or to select compounds for acquisition
from external vendors.

3.1 Substructural Analysis

Substructural analysis (SSA) [Cramer et al. 1974] is related to the Free–Wilson
approach described in Chapter 4. The premise is that each substructural fragment
makes a constant contribution to the activity, independent of the other fragments
in the molecule. The aim is to derive a weight for each substructural fragment
that reflects its tendency to be in an active or an inactive molecule. The sum of
the weights for all of the fragments contained within a molecule gives the score
for the molecule, which therefore enables a new set of structures to be ranked in
decreasing probability of activity.

Many different weighting schemes are possible. One fairly simple function is
to define the weight of a fragment i according to:

wi = acti
acti + inacti

(7.3)
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where acti is the number of active molecules that contain the i th fragment and
inacti is the number of inactive molecules that contain the i th fragment. An early
application of SSA was to screening set selection in the US Government’s anti-
cancer programme [Hodes et al. 1977]. Naive Bayesian classifiers (NBCs) are
closely related to SSA [Hert et al. 2006] and have also been applied to screening
set selection and the analysis of HTS data sets [Bender et al. 2004; Xia et al. 2004;
Rogers et al. 2005].

The fragments used in SSA often correspond to those present in structural keys
of the type used for substructure searching. An alternative is to use an automated
method to identify substructures that are relevant for a given data set. This is the
basis of the CASE and MULTICASE algorithms [Klopman 1984; Klopman 1992].
These methods generate all possible connected fragments, containing between 3
and 12 atoms, for the molecules in the data set. The distribution of each fragment
in the active and inactive molecules is determined. Each distribution is then
evaluated to determine whether the fragment is particularly prevalent in the active
molecules or in the inactive molecules or whether its distribution is simply that
which would be expected by chance. In this way it is possible to automatically
identify a set of fragments specific to the data set that constitute a mathematical
model for predicting whether new structures are likely to be active or inactive.
The CASE and MULTICASE algorithms have been applied to a wide variety
of problems including the prediction of physicochemical properties [Klopman
et al. 1992; Klopman and Zhu 2001], the generation of quantitative structure–
activity models (particularly for predicting toxicity, carcinogenicity, mutagenicity
and biodegradation [Rosenkranz et al. 1999]) and to the analysis of large data
sets [Klopman and Tu 1999]. It is also possible to use hashed fingerprints for
substructural analyses. For example, in the “hologram QSAR” approach PLS
analysis is used to derive a model based on the number of times each bit in
the fingerprint is set [Tong et al. 1998]. A further example is provided by the
Stigmata algorithm which identifies bits that are present in a user-defined fraction
of the active molecules with the results being presented using graphical display
techniques [Shemetulskis et al. 1996].

3.2 Discriminant Analysis

The aim of discriminant analysis is to try and separate the molecules into their
constituent classes. The simplest type is linear discriminant analysis which in
the case of two activity classes and two variables aims to find a straight line that
best separates the data such that the maximum number of compounds is correctly
classified [McFarland and Gains 1990] (see Figure 7-5). With more than two
variables the line becomes a hyperplane in the multidimensional variable space.
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x1

x2

Figure 7-5. A linear discriminant analysis aims to find a line that best separates the active and
the inactive molecules. The dotted line in the figure is the discriminant function; the solid line is
the corresponding discriminant surface. Note that in this case it is not possible to find a line that
completely separates the two types of data points.

A linear discriminant analysis is characterised by a discriminant function
which is a linear combination of the independent variables (x1, x2, . . ., xn):

W = c1x1 + c2x2 + · · · cnxn (7.4)

The surface that separates the classes is orthogonal to this function, as shown
in Figure 7-5. Feeding the appropriate descriptor values into this equation enables
the value of the discriminant function to be computed for a new molecule.
Values above a threshold correspond to one activity class and lie to one side
of the discriminant surface and values below the threshold correspond to the
other activity class. More than one discriminant function may be possible,
corresponding to different values for the coefficients ci in Equation 7.4 (i.e. there
is not necessarily a unique solution). Techniques such as cross-validation may be
useful in order to distinguish between the different functions.

The first application of discriminant analysis to a set of biologically active
molecules is generally considered to be the work of Martin et al. [1974] on a series
of aminotetralins and aminoindans that are inhibitors of the enzyme Monoamine
Oxidase, a potential antidepressant target. The study involved a relatively small
data set containing 20 compounds with the general structure shown in Figure 7-6.
Linear discriminant analysis was used for the analysis rather than multiple linear
regression since the biological activity data were not on a continuous scale of
activity but rather were classified into two groups: active and inactive.
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Figure 7-6. General structure of the aminotetralins and aminoindans considered in the
discriminant analysis studied by Martin et al. [1974].

Several descriptors were investigated, with two being shown to be statistically
significant. These were a Taft steric parameter and an indicator variable that
was set to one for substituents at the X position (see Figure 7-6) and zero for
substituents at the Y position. Just one molecule was misclassified in the resulting
model, which was also confirmed using randomly selected training and test subsets
of the data.

3.3 Neural Networks

Neural networks evolved from research into computational models of the brain.
The two most commonly used neural network architectures in chemistry are the
feed-forward network and the Kohonen network [Schneider and Wrede 1998;
Zupan and Gasteiger 1999]. A feed-forward neural network consists of layers of
nodes with connections between all pairs of nodes in adjacent layers, as illustrated
in Figure 7-7. Each node exists in a state between zero and one, the state of each
node depending on the states of the nodes to which it is connected in the previous
layer and the strengths (or weights) of these connections. A key feature of the
feed-forward neural network is the presence of one or more layers of hidden
nodes; it was the introduction of such multilayer networks together with the back-
propagation algorithm used to train them [Rummelhart et al. 1986] that enabled
neural networks to be successfully applied to problems in many varied fields.

The neural network must first be “trained”; this is achieved by repeatedly
providing it with a set of inputs and the corresponding outputs from a training set.
Each node in the input layer may for example correspond to one of the descriptors
that are used to characterise each molecule. The weights and other parameters
in the neural network are initially set to random values and so the initial output
from the neural network (from the output node or nodes) may be significantly
different to the desired outputs. A key part of the training phase therefore involves
modification of the various weights and parameters that govern the status of the
nodes and the connections between them. Once the neural network has been
trained it can then be used to predict the values for new, unseen molecules. A
practical example of the use of a neural network to predict “drug-likeness” will be
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Figure 7-7. A feed-forward neural network with seven input nodes, three hidden nodes and one
output node.

discussed in Chapter 8; another common use has been in generating QSAR models
[Andrea and Kalayeh 1991; Manallack et al. 1994].

The feed-forward neural network is a supervised learning method, as it uses the
values of the dependent variables to derive the model. The Kohonen network or
self-organising map by contrast is an unsupervised learning method. A Kohonen
network most commonly consists of a rectangular array of nodes (Figure 7-8).
Each node has an associated vector that corresponds to the input data (i.e. the
molecular descriptors). Each of these vectors initially consists of small random
values. The data is presented to the network one molecule at a time and the distance
between the molecule vector and each of the node vectors is determined using the
following distance metric:

d =
p∑

i=1

(xi − vi )
2 (7.5)

where vi is the value of the i th component of the vector v for the node in question
and xi is the corresponding value for the input vector. The sum is over the p
molecular descriptors. The node that has the minimum distance to the input vector
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Figure 7-8. Kohonen network showing neighbourhood behaviour. Each node has an associated
vector of values. During training the size of the neighbourhood around each winning node is
gradually reduced. In order to eliminate edge effects a Kohonen network may be constructed
so that opposite sides of the rectangle are joined together, as indicated by the arrows. Thus the
immediate neighbours of the bottom right node would be those shaded in grey.

can thus be identified. The vector of this winning node is then updated according
to the following formula:

v ′
i = vi + η (xi − vi ) (7.6)

where η is a gain term. A key feature of the Kohonen network is that in addition to
updating the winning node the vectors of its neighbouring nodes are also updated
using the same formula. This updating mechanism thus makes the vector of the
winning node, and those of its neighbours, more similar to the input. During the
training process the gain term gradually decreases, so slowing the rate at which the
vectors are modified. The neighbourhood radius is also reduced during training, so
localising the activity, as indicated in Figure 7-8.

By modifying the vectors of not only the winning node but also its neighbours
the Kohonen network creates regions containing similar nodes. For example,
Figure 7-9 shows a Kohonen classification of drug and non-drug molecules
[Schneider 2000] (see also Chapter 8). To use a Kohonen network the vector for
an unknown molecule would be presented and its grouping identified according to
the location of the nearest node. Kohonen networks also provide a mechanism for
data reduction and so are an alternative to non-linear mapping.
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Figure 7-9. Classification of drug and non-drug molecules using a Kohonen network. The
distribution of the two types of molecules is indicated by grey shading, with dark regions being
dominated by drugs and light regions by non-drugs. (Adapted from Schneider 2000.)

One practical issue with neural networks is the problem of overtraining.
An overtrained neural network will often give excellent results on the test data
but will have poor predictive ability on an unseen data set. This arises because the
network “memorises” the training data. In order to try and alleviate this problem
the training data can be divided into two; one portion to be used for training as
usual, and the other to evaluate the performance of the network during the training
phase. It is often observed that the performance of the network in predicting this
second evaluation set will initially increase but will then either reach a plateau
or start to decline. At this point the network has maximum predictive ability and
training should cease.

3.4 Decision Trees

A drawback with feed-forward neural networks is that it is generally not
possible to determine why the network gives a particular result for a given input.
This is due to the complex nature of the interconnections between the nodes;
one cannot easily determine which properties are important. Decision trees by
contrast are very interpretable as they consist of a set of “rules” that provide the
means to associate specific molecular features and/or descriptor values with the
activity or property of interest. A decision tree is commonly depicted as a tree-
like structure, with each node corresponding to a specific rule. Each rule may
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Atom charge 9
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Figure 7-10. Example of a decision tree for a set of 50 active and 12 inactive sumazole and
isomazole analogues [A-Razzak and Glen 1992]. In order to classify an unknown molecule
a path is followed through the tree according to the values of the relevant properties, until a
terminal node is reached. The values indicate the number of active and inactive molecules at
each node.

correspond to the presence or absence of a particular feature or to the value of a
descriptor. An example of a decision tree is shown in Figure 7-10; this was one
of several produced during an investigation into the application of an algorithm
called ID3 (see below) to a series of literature QSAR data sets [A-Razzak and
Glen 1992]. The decision tree shown in Figure 7-10 is for a series of sumazole
and isomazole compounds, some of which possess inotropic properties relevant to
cardiac failure. This data set is of particular interest because the active compounds
are surrounded in the descriptor space by the inactive molecules; such a situation
can cause problems for regression-based methods. To use a decision tree one starts
at the root node and follows the edge appropriate to the first rule. This continues
until a terminal node is reached, at which point one can assign the molecule into
the appropriate activity class. One can also use the decision tree to determine what
features give rise to activity and what leads to inactivity.

Various methods are available to construct decision trees. Most of these follow
the same basic approach, which is to start with the entire data set and identify the
descriptor or variable that gives the “best” split. This enables the data set to be
divided into two or more subsets. The same procedure is then applied to each of
these subsets, and so on until all of the molecules have been appropriately divided
into their distinct classes or until no more splits of significance can be found. One
group of algorithms (including ID3, C4.5 and C5.0 [Quinlan 1993; C5.0]) uses
results from the field of information theory to decide which criteria to choose at
each step. If there are N molecules divided into C1, C2, C3 . . . classes, each class



Analysis of High-Throughput Screening Data 155

Ci containing ni molecules, then the information corresponding to this distribution
(also called the entropy of the system) is given by:

I =
∑

pi ln pi (7.7)

where pi = ni/N . This result is used to decide which variable or descriptor to
use in order to construct the next rule: that which gives rise to the largest increase
in entropy (also called the gain). In recursive partitioning (RP), another popular
method for constructing decision trees, the usual node splitting strategy is to split
on the descriptor that is statistically the most significant. For example, in a study to
investigate the use of RP to explain Monoamine Oxidase activity [Hawkins et al.
1997] in which the compounds were characterised by a 153-element substructural
key the most significant descriptor was found to be the presence in the molecule
of a carbon–carbon triple bond. A recent study investigated the use of RP in
combinatorial library design and HTS analysis, and involved a comparison of
various implementations of the algorithm and different descriptor sets [van Rhee
et al. 2001]. In this particular case it was concluded that models built from the
screening data of a subset of the entire library were able to identify a significant
proportion of the active molecules in the remaining library, thereby reducing
the number of compounds that needed to be screened subsequently. Two of the
more widely used RP algorithms are CART (Classification and Regression Trees
[Breiman et al. 1984; CART]) and FIRM (Formal Inference-based Recursive
Modeling [Hawkins 1997; FIRM]).

Some decision tree methods only consider binary splits at each node; others
can consider multiple branches. Some methods require the descriptors to be either
binary (e.g. indicating the presence or absence of a substructure) or to be divided
prior to the calculation into distinct categories (e.g. ClogP < 2.0; ClogP ≥ 2.0).
Other implementations are able to use both binary and real-valued data and can
automatically determine where to make the splits, though at the expense of longer
compute times. A problem with some of the basic algorithms is that the resulting
tree may be very complex, giving an excellent fit to the training data but whose
performance on unseen, test data might be less effective. Some programs are able
to prune these complex trees, for example by removing subtrees that have a high
estimated prediction error and replacing them by a single node. Single decision
trees can also be prone to one particular split assuming undue importance. In order
to address these problems a variety of ensemble approaches have been developed;
these involve the construction of collections of trees, each of which is generated
by training on a subset of the data set. These data subsets may be generated using
a bootstrap method in which the data set is sampled with replacement (i.e. there
may be duplicates in the subset and some molecules may not appear). The simplest



156 An Introduction to Chemoinformatics

ensemble method is termed bagging, in which trees are repeatedly generated
on bootstrap samples and new molecules are classified using a majority voting
mechanism. Random forests [Breiman 2001] are an extension of bagging, in which
a small subset of the descriptors is randomly selected at each node rather than
using the full set. In boosting [Quinlan 1996] each tree is designed to improve
the performance for data points misclassified by its predecessor. This is achieved
by giving more weight to such misclassified points. The set of trees is then used
to classify unseen data using a voting scheme which gives a higher weight to the
predictions for these later, more “expert” trees.

The general-purpose decision tree algorithms are able to deal with relatively
large data sets but for certain problems more specialised algorithms are required.
One such example is a RP procedure called SCAM [Rusinko et al. 1999]. This
method uses mathematical and computing techniques that take advantage of the
characteristics of binary descriptors. As a consequence it is able to analyse data
sets containing hundreds of thousands of molecules, each of which is characterised
by very large binary fingerprints derived from procedures such as atom pairs or
topological torsions.

The algorithms described above are supervised in nature, with the activity data
being used to guide construction of the tree. Similar hierarchical structures can
also be constructed using unsupervised methods, as in the phylogenetic-like tree
method [Nicolaou et al. 2002; Tamura et al. 2002; Bacha et al. 2002]. Central
to this particular approach is the use of a MCS algorithm (see Chapter 5). At each
iteration of the procedure, cluster analysis is applied to the structures in each node,
following which the MCS of the structures in each cluster is determined. Various
rules are applied to decide whether this represents a new feature, for example to
check that the substructure has not been discovered previously or is a subset of
the parent node. If these tests are successful then a new node is added to the tree.
This procedure is initially applied to just the active molecules, following which the
inactive compounds are filtered through the tree. This enables the average activity
of each node to be determined, thereby identifying nodes that may be of particular
interest for further visual inspection.

3.5 Support Vector Machines and Kernel Methods

The support vector machine (SVM) has become a popular classification
technique. The SVM attempts to find a boundary or hyperplane that separates two
classes of compounds. The hyperplane is positioned using examples in the training
set which are known as the support vectors; the use of a subset of the training data
prevents overtraining. When the data cannot be separated linearly, kernel functions
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can be used to transform it to higher dimensions where it does become linearly
separable. Molecules in the test set are mapped to the same feature space and
their activity is predicted according to which side of the hyperplane they fall. The
distance to the boundary can be used to assign a confidence level to the prediction
such that the greater the distance the higher is the confidence in the prediction.
SVMs have been applied to the prediction of activity against a series of G-protein
coupled receptors (GPCRs) [Saeh et al. 2005]. They have also been applied in an
active learning scenario where compounds are selected for successive rounds of
screening [Warmuth et al. 2003]. A disadvantage of the SVM is that, as for neural
networks, it is a black box method, making it more difficult to interpret the results
than for some methods such as decision trees.

Binary kernel discrimination (BKD) is another machine learning method that
uses a kernel function that has been developed for binary data such as 2D
fingerprints. BKD was first applied in chemoinformatics by Harper et al. [2001]
using the kernel function described below:

Kλ(i, j) = [λn−di j (1 − λ)di j ]β/n (7.8)

where λ is a smoothing parameter, n is the length of the binary fingerprint, di j is the
Hamming distance between the fingerprints for molecules i and j , and β(β ≤ n)

is a user-defined constant. The optimum value for λ is determined using a training
set and the following equation:

SBKD( j) =
∑

i∈actives
Kλ(i, j)

∑
i∈inactives

Kλ(i, j)
(7.9)

A score is computed for each training set molecule based on the other training
set molecules for λ values ranging from 0.50 to 0.99. The optimum value of λ is
that which gives the minimum sum of ranks of the active molecules. The equation
can then be used to rank compounds in a test set. The value of λ effectively
determines the number of near neighbours that are used to predict the activity of
compounds in the test set. BKD has been applied to the NCI AIDS data set and to
agrochemical HTS data sets where it has been shown to be superior to SSA [Wilton
et al. 2003]. Since Harper’s work the complement of the Tanimoto coefficient (i.e.
the Soergel distance) has been shown to outperform the Hamming distance over a
range of different data sets [Chen et al. 2006].
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HTS data is often rather “noisy” and it is therefore of interest to determine how
robust are the various machine learning methods. For example, Chen et al. [2006]
have simulated such data by progressively reassigning known actives as inactives,
and vice versa. This effectively introduces increasing numbers of false positives
and false negatives. BKD was compared with SSA and although BKD was found
to be more effective when presented with the clean data, it was much less effective
than SSA for the noisy data. SSA was found to be robust to noisy data even when
up to 90% of the actives consisted of false positives. A similar study compared a
NBC with SVM and RP [Glick et al. 2006]. Comparable results were found with
the SVM being most effective with clean data, and the NBC (which is similar to
SSA) being more robust when presented with noisy data.

4. SUMMARY

The development of methods for the analysis of HTS data is an area of much
interest and current research. Some of the computational tools that are being used
to tackle this problem are well established; however, other techniques that have
been applied in the wider data mining community are of growing interest such as
SVMs and other kernel-based learning methods [Christianini and Shawe-Taylor
2000; Bennett and Campbell 2000; Harper et al. 2001]. Of all the areas discussed
in this book, the analysis of large diverse data sets is probably the least advanced
with most scope for further developments. This is of course largely due to the
fact that the experimental techniques are relatively new. Moreover, advances in the
experimental techniques themselves can also have a major impact on the approach
that one takes to the subsequent data analysis, such as the use of statistical
methods to assess the underlying quality of the data [Zhang et al. 1999]. It will
be particularly important to find ways to incorporate such information into any
subsequent chemoinformatics analysis. Indeed, it is likely that no single analysis
technique will prove to be universally recommended, but that it will be necessary
to consider a number of different methods to determine which is most appropriate,
or alternatively to use several techniques in parallel. An example of the latter
approach is the published analysis of the NCI’s anti-cancer data [Shi et al. 2000].
This data set comprises approximately 70,000 compounds which have been tested
in 60 human cancer cell lines. A variety of methods were employed, including
principal components analysis, cluster analysis, multidimensional scaling and
neural networks. One finding of particular interest was that although the data for
any single cell line were not particularly informative, patterns of activity across
the 60 cell lines did provide conclusive information on the mechanisms of action
for the screened compounds.



Chapter 8

VIRTUAL SCREENING

1. INTRODUCTION

Virtual screening is the computational or in silico analogue of biological
screening. The aim of virtual screening is to score, rank and/or filter a set
of structures using one or more computational procedures. Virtual screening is
used, for example, to help decide which compounds to screen, which libraries to
synthesise and which compounds to purchase from an external company. It may
also be employed when analysing the results of an experiment, such as a HTS run.

There are many different criteria by which the structures may be scored,
filtered, or otherwise assessed in a virtual screening experiment. For example,
one may use a previously derived mathematical model such as a multiple linear
regression equation to predict the biological activity of each structure. One may
use a series of substructure queries to eliminate molecules that contain certain
undesirable functionality. If the structure of the target protein is known, one
may use a docking program to identify structures that are predicted to bind
strongly to the protein active site. The number of structures that may need to be
considered in virtual screening experiments can be very large; when evaluating
virtual combinatorial libraries the numbers may run into the billions. It is therefore
important that the computational techniques used for the virtual screening have
the necessary throughput. This is why it may often be most effective to use a
succession of virtual screening methods of increasing complexity [Charifson and
Walters 2000]. Each method acts as a filter to remove structures of no further
interest, until at the end of the process a series of candidate structures are available
for final selection, synthesis or purchase.

Wilton et al. [2003] have suggested that there are four main classes of virtual
screening methods, according to the amount of structural and bioactivity data
available. If just a single active molecule is known then similarity searching can
be performed in what is sometimes known as ligand-based virtual screening. If
several actives are available then it may be possible to identify a common 3D
pharmacophore, followed by a 3D database search. If a reasonable number of
active and inactive structures are known they can be used to train a machine
learning technique such as a neural network which can then be used for virtual
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Figure 8-1. Many virtual screening processes involve a sequence of methodologies.

screening. Finally, protein–ligand docking can be employed when the 3D structure
of the protein is known. In addition to these methods that are specific to particular
targets, virtual screening techniques have been developed that are of more general
applicability. These include, for example, methods that attempt to predict the
likelihood that a molecule possesses “drug-like” characteristics and that it has the
desired physiochemical properties to be able to reach its site of action within the
body. A schematic illustration of a typical virtual screening flowchart is shown in
Figure 8-1.

Similarity searching and pharmacophore methods were described in Chapters 5
and 2, respectively. Many of the machine learning techniques that can be applied
when several actives and inactives are known were introduced in Chapter 7 and
will be further expanded here in the context of predicting “drug-likeness”. We will
then discuss the application of protein–ligand docking in structure-based virtual
screening, and finally the prediction of ADMET properties.

2. “DRUG-LIKENESS” AND COMPOUND FILTERS

The advent of combinatorial chemistry and HTS enabled much larger number
of compounds to be synthesised and tested but it did not lead to the expected
improvements in the numbers of lead molecules being identified. This observation
sparked much interest in the concept of “drug-likeness” [Clark and Pickett 2000;
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Walters and Murcko 2002] and attempts to determine which features of drug
molecules confer their biological activity and distinguish them from general
“organic” compounds.

Among the simplest types of methods that can be used to assess “drug-
likeness” are substructure filters. As discussed in Chapter 7, a compound collection
may include molecules that contain reactive groups known to interact in a non-
specific manner with biological targets, molecules that give “false positive” results
due to interference with certain types of biological assay, or molecules which are
simply inappropriate starting points for a drug discovery programme [Roche et al.
2002]. Many of these features can be defined as substructures or as substructure
counts that are used to filter both real and virtual data sets. One may wish to
apply such filters to the output from a HTS run, in order to eliminate known
problem molecules from further consideration (of course, one would prefer to
eliminate such compounds prior to the screen). They are also extremely useful
when designing virtual libraries and when selecting compounds to purchase from
external suppliers. One should, however, always remember that such filters tend to
be rather general in nature and that for any specific target it may be necessary to
modify or extend them accordingly.

Other approaches to the question of “drug-likeness” were derived by analysing
the values of relatively simple properties such as molecular weight, the number of
rotatable bonds and the calculated logP in known drug molecules. Considerations
such as these led to the formulation of the “rule of five” [Lipinski et al. 1997]
which constitutes a set of simple filters that suggest whether or not a molecule
is likely to be poorly absorbed. The “rule of five” states that poor absorption or
permeation is more likely when:

1. The molecular weight is greater than 500
2. The logP is greater than five
3. There are more than five hydrogen bond donors (defined as the sum of OH

and NH groups)
4. There are more than ten hydrogen bond acceptors (defined as the number of

N and O atoms)

Excluded from this definition are those compounds that are substrates for
biological transporters. An obvious attraction of this model is that it is extremely
simple to implement and very fast to compute; many implementations report the
number of rules that are violated, flagging or rejecting molecules that fail two or
more of the criteria. A more extensive evaluation of property distributions for a
set of drugs and non-drugs has identified the most likely values for “drug-like”
molecules [Oprea 2000]. For example, 70% of the “drug-like” compounds had
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between zero and two hydrogen bond donors, between two and nine hydrogen
bond acceptors, between two and eight rotatable bonds and between one and
four rings. The “rule of five” was derived following a statistical analysis of
known drugs; a similar analysis has since been carried out on agrochemicals with
modified sets of rules being derived that relate to the properties of herbicides and
insecticides [Tice 2001].

Others have attempted to derive more sophisticated computational models
of “drug-likeness” using techniques such as neural networks or decision trees.
Typically these models start with a training set of drugs and non-drugs, for which
a variety of descriptors are calculated. The training set and its corresponding
descriptors are then used to develop the model, which is evaluated using a
test set. For example, Sadowski and Kubinyi constructed a feed-forward neural
network with 92 input nodes, 5 hidden nodes and 1 output node to predict “drug-
likeness” [Sadowski and Kubinyi 1998]. The data set comprised compounds
from the WDI (the drugs) and a set of structures extracted from the Available
Chemicals Directory [ACD] (assumed to have no biological activity, and therefore
to be non-drugs). Each molecule was characterised using a set of atom types
originally devised by Ghose and Crippen for the purposes of predicting logP
[Ghose and Crippen 1986]. The counts of each of the 92 atom types for the
molecules provided the input for the neural network. These descriptors act as
a form of extended molecular formula and were found to perform better than
whole-molecule descriptors such as the logP itself or detailed descriptors such
as a structural key or hashed fingerprint. The network was able to correctly assign
83% of the molecules from the ACD to the non-drugs class and 77% of the WDI
molecules to the drugs class. Other groups have obtained comparable results [Ajay
et al. 1998; Frimurer et al. 2000].

Wagener and van Geerestein [2000] used decision trees to tackle this problem.
The same databases were used to identify drug and non-drug molecules and
the same set of Ghose-Crippen atom type counts were used to characterise
each molecule. The C5.0 algorithm [Quinlan 1993; C5.0] was employed. Its
performance was comparable to that of the neural network, correctly classifying
82.6% of an independent validation set. A second model designed to reduce
the false negative rate (i.e. the misclassification of drug molecules) was able to
correctly classify 91.9% of the drugs but at the expense of an increased false
positive rate (34.3% of non-drugs misclassified). Some of the rules in the decision
tree were of particular interest; these suggested that merely testing for the presence
of some simple functional groups such as hydroxyl, tertiary or secondary amino,
carboxyl, phenol or enol groups would distinguish a large proportion of the drug
molecules. Non-drug molecules were characterised by their aromatic nature and a
low functional group count (apart from halogen atoms).
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Gillet et al. [1998] used a genetic algorithm to build a scoring scheme for
“drug-likeness”. The scoring scheme was based on the following physicochemical
properties: molecular weight; a shape index (the kappa–alpha 2 index [Hall and
Kier 1991]) and numbers of the following substructural features: hydrogen bond
donors; hydrogen bond acceptors; rotatable bonds; and aromatic rings. Each
property was divided into a series of bins that represent ranges of values of the
property, such as molecular weight ranges or counts of the number of times a
particular substructure or feature occurs in a molecule. A weight is associated
with each bin and a molecule is scored by determining its property values and
then summing the appropriate weights across the different properties. The genetic
algorithm was used to identify an optimum set of weights such that maximum
discrimination between the two classes was achieved, with molecules in one class
scoring highly while molecules in the other class have low scores. In the case of
“drug-likeness” the genetic algorithm was trained using a sample of the SPRESI
database [SPRESI] to represent “non-drug-like” compounds and a sample of the
WDI to represent “drug-like” compounds. The resulting model was surprisingly
effective at distinguishing between the two classes of compounds, as can be seen
in Figure 8-2. It has subsequently been used to filter compounds prior to high-
throughput screening [Hann et al. 1999].

One interesting development has been the introduction of “lead-likeness” as a
concept distinct from “drug-likeness”. The underlying premise is that during the
optimisation phase of a lead molecule to give the final drug there is an increase
in the molecular “complexity”, as measured by properties such as molecular
weight, the numbers of hydrogen bond donors and acceptors and ClogP. It has
therefore been argued [Teague et al. 1999; Hann et al. 2001] that one should
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Figure 8-2. Output from the genetic algorithm scoring scheme used to distinguish drugs from
non-drugs showing the degree of discrimination that can be achieved. The WDI contains known
drug-like molecules whereas SPRESI is a database containing general “organic” molecules,
assumed to have no biological activity.
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use “lead-like” criteria when performing virtual screening at that stage rather
than the “drug-like” criteria typified by the “rule of five”. These arguments are
supported by analyses of case-histories of drug discovery together with theoretical
models of molecular complexity. Interest in lead-likeness led in turn to fragment-
based approaches to drug discovery, wherein less complex molecules are screened
to provide starting points for subsequent optimisation. The small size of the
molecules used in such approaches means that they need to be screened at higher
concentrations or using biophysical techniques such as x-ray crystallography or
NMR. In addition to the practical aspects of fragment-based drug discovery there
have also been associated theoretical developments, such as the “rule of three”
[Congreve et al. 2003] (a fragment equivalent of the rule of five) and the concept
of ligand efficiency [Hopkins et al. 2004] (a method for prioritising the output from
screening experiments in order to identify the most promising initial candidates).

3. STRUCTURE-BASED VIRTUAL SCREENING

As the number of protein crystal structures has increased so too has
the interest in using this detailed structural knowledge for library design,
compound acquisition and data analysis. Structure-based design methods have
been developed over many years. However, much of this activity was geared
towards methods for the detailed analysis of small numbers of molecules. Several
factors have contributed to the move towards higher-throughput structure-based
methods. First, high-performance computer hardware (often based on the linux
operating system) has provided unparalleled amounts of dedicated computing
power at a low cost to researchers. Second a significant effort has been expended
in the development of new algorithms, particularly for molecular docking. Finally,
tools for the analysis of the output of such calculations enable scientists to navigate
more effectively through the large quantities of data generated.

3.1 Protein–Ligand Docking

The aim of a docking experiment is to predict the 3D structure (or structures)
formed when one or more molecules form an intermolecular complex. A large
number of methods have been proposed for protein–ligand docking [Blaney and
Dixon 1993; Abagyan and Totrov 2001; Taylor et al. 2002; Halperin et al. 2002].
There are essentially two components to the docking problem. First, it is necessary
to have a mechanism for exploring the space of possible protein–ligand geometries
(sometimes called poses). Second it is necessary to be able to score or rank these
poses in order to identify the most likely binding mode for each compound and to
assign a priority order to the molecules.
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The difficulty with protein–ligand docking is in part due to the fact that it
involves many degrees of freedom. The translation and rotation of one molecule
relative to another involves six degrees of freedom. There are in addition the
conformational degrees of freedom of both the ligand and the protein. The solvent
may also play a significant role in determining the protein–ligand geometry and the
free energy of binding even though it is often ignored. An expert computational
chemist may be able to predict the binding mode of a ligand using interactive
molecular graphics if he/she has a good idea of the likely binding mode (e.g. if the
x-ray structure of a close analogue is available). However, manual docking can be
very difficult when dealing with novel ligand structures and is clearly impractical
for large numbers of molecules.

It can be convenient to classify the various docking algorithms according to the
degrees of freedom that they consider. Thus the earliest algorithms only considered
the translational and rotational degrees of freedom of protein and ligand, treating
each as rigid bodies. The algorithms most widely used at present enable the ligand
to fully explore its conformational degrees of freedom; some programs do also
permit some very limited conformational flexibility to the protein (e.g. permitting
the side chain protons of serine, threonine, trypsin and lysine residues to freely
rotate). A few published algorithms attempt to take more of the protein flexibility
into account, but these have not yet been extensively evaluated nor are they in
widespread use [Carlson 2002; Shoichet et al. 2002].

The DOCK algorithm developed by Kuntz and co-workers is generally
considered one of the major advances in protein–ligand docking [Kuntz et al.
1982, 1994; Desjarlais et al. 1988; Kuntz 1992]. The earliest version of the
DOCK algorithm only considered rigid body docking and was designed to identify
molecules with a high degree of shape complementarity to the protein binding
site. The first stage of the DOCK method involves the construction of a “negative
image” of the binding site. This negative image consists of a series of overlapping
spheres of varying radii, derived from the molecular surface of the protein. Each
sphere touches the molecular surface at just two points (see Figure 8-3). Ligand
atoms are then matched to the sphere centres so that the distances between the
atoms equal the distances between the corresponding sphere centres, within some
tolerance. These pairs of ligand atoms and sphere centres can be used to derive
a translation–rotation matrix that enables the ligand conformation to be oriented
within the binding site using molecular fitting. The orientation is checked to
ensure that there are no unacceptable steric interactions and it is then scored.
New orientations are produced by generating new sets of matching ligand atoms
and sphere centres. The procedure continues until all possible matches have been
considered.
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Figure 8-3. Operation of the DOCK algorithm. A set of overlapping spheres is used to create
a “negative image” of the active site. Ligand atoms are matched to the sphere centres, thereby
enabling the ligand conformation to be oriented within the active site for subsequent scoring.

More recent algorithms that take the ligand conformational degrees of freedom
into account can be conveniently classified according to the way in which they
explore the conformational space. The simplest way is to generate an ensemble
of ligand conformations using an appropriate conformational search algorithm
(see Chapter 2) and then to dock each of these using a rigid body algorithm.
This may seem to be a rather inefficient approach, but nevertheless some quite
effective methods are based on this method; these usually employ a variety of
filters and approximations to rapidly identify the conformations of interest [Glide,
FRED]. The relevance of a conformational analysis performed using the isolated
ligand might be questioned but a number of studies have demonstrated that
the conformations of ligands observed in protein–ligand complexes often have
very similar geometries to minimum-energy conformations of the isolated ligand
[Boström et al. 1998]. Other methods explore the orientational and conformational
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degrees of freedom at the same time. Most of these methods fall into one of
three categories: Monte Carlo algorithms, genetic algorithms and incremental
construction approaches.

The simplest Monte Carlo algorithms for protein–ligand docking are closely
related to those employed for conformational analysis [Goodsell and Olson 1990].
At each iteration of the procedure either the internal conformation of the ligand
is changed (by rotating about a bond) or the entire molecule is subjected to a
translation or a rotation within the binding site. The new configuration is accepted
if its energy (Vnew) is lower than that of its predecessor (Vold) or if the Boltzmann
factor exp[−(Vnew −Vold)/kT ] is greater than a random number between zero and
one. Simulated annealing (also described in Chapter 2) is frequently employed to
search for the lowest energy solution. More complex Monte Carlo methods such
as tabu search have also been used; this particular method directs the search away
from regions already visited, thereby ensuring greater exploration of the binding
site [Baxter et al. 1998].

Genetic and evolutionary algorithms can be used to perform protein–ligand
docking [Judson et al. 1994; Jones et al. 1995b; Oshiro et al. 1995; Gehlhaar
et al. 1995]. In these methods each chromosome in a population encodes one
conformation of the ligand together with its orientation within the binding site. A
scoring function is used to calculate the fitness of each member of the population
and to select individuals for each iteration. As with the Monte Carlo search
methods, the underlying random nature of the genetic algorithm means that it is
usual to perform a number of runs and to select the structures with the highest
scores.

Incremental construction methods construct conformations of the ligand within
the binding site in a series of stages [Leach and Kuntz 1990; Welch et al.
1996; Rarey et al. 1996]. A typical algorithm of this type first identifies one
or more “base fragments” which are docked into the binding site. These base
fragments are usually fairly sizeable (often rigid) parts of the molecule such as ring
systems. The orientations of the base fragment then form the basis for a systematic
conformational analysis of the remainder of the ligand, with the protein binding
site providing an additional set of constraints that can be used to prune the search
tree.

3.2 Scoring Functions for Protein–Ligand Docking

It is often useful to make a distinction between docking and scoring in
structure-based virtual screening experiments. Docking involves the prediction of
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the binding mode of individual molecules, the aim being to identify the orientation
that is closest in geometry to the observed (x-ray) structure. Several studies have
been performed to evaluate the performance of docking programs using data sets
derived from the PDB and it is found that these programs are able to correctly
predict the binding geometry in more than 70% of the cases [Jones et al. 1997;
Kramer et al. 1999; Nissink et al. 2002]. However, it is not always straightforward
to predict which of the many docking programs will give the best result in any
particular case [Kontoyianni et al. 2004; Warren et al. 2006]. An illustration of
the type of results that are produced by a typical docking program is shown in
Figure 8-4. For virtual screening, however, it is also necessary to be able to score
or rank the ligands using some function related to the free energy of association
of the protein and ligand to form the intermolecular complex. Ideally, of course,
the same function would be used for both docking the ligands and for predicting
their free energies of binding. This is indeed the case for some methods. Others
use different functions for docking and for scoring. This may be due to the fact that
the large number of orientations generated during a typical docking run requires
a function that can be calculated very rapidly; the time required to calculate some
scoring functions precludes their use during the docking phase. They are instead
used to score the final structures produced by the docking algorithm. The use

Figure 8-4. Illustration of the range of results produced by a typical docking program. Here
we show the results obtained by running the GOLD program [Jones et al. 1995b] on three
ligands from the PDB. In each case the x-ray conformation is shown in dark grey and the top-
ranked docking result in light grey. The PDB codes for the three ligands are (clockwise, from
top left) 4PHV (a peptide-like ligand in HIV Protease), 1GLQ (a nitrophenyl-substituted peptide
in glutathione S transferease) and 1CIN (oleate in fatty acid binding protein). These dockings
were classified as “good”, “close” and “wrong” [Jones et al. 1997].
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of separate functions for docking and for scoring is also a reflection of the fact
that many of the functions that perform well in predicting the binding mode of
individual molecules do not necessarily perform well for scoring and ranking
different ligands binding to the same protein. Moreover, it is generally found
that whilst docking and scoring methods are often able to achieve some degree
of enrichment (compared to random) they are rarely able to accuractely predict
the free energies of binding [Leach et al. 2006].

Most of the scoring functions in current use are consistent with the hypothesis
that the free energy of binding can be written as a linear summation of terms to
reflect the various contributions to binding [Böhm and Klebe 1996]. A complete
equation of this type would have the following form [Ajay and Murcko 1995]:

	Gbind = 	Gsolvent + 	Gconf + 	Gint + 	Grot + 	Gt/r + 	Gvib (8.1)

	Gsolvent captures contributions to the free energy of binding from solvent
effects. These contributions arise from interactions between the solvent and the
ligand, protein and protein–ligand complex. Most approaches to docking and
scoring are performed in the absence of any explicit solvent molecules; it is thus
necessary to devise ways to take these important effects into account. 	Gconf
arises from conformational changes to the protein and to the ligand. This is
difficult to estimate for the protein. The ligand moves from an ensemble of
conformations in free solvent to what is often assumed to be a single dominant
conformation in the intermolecular complex (that may not necessarily be a
minimum-energy conformation for the isolated ligand). The penalty associated
with this can be estimated in various ways; one study suggested an average penalty
of 3 kcal/mol relative to the most significant conformation in solution [Boström
et al. 1998]. 	G int is the contribution from protein–ligand interactions, arising
from electrostatic and van der Waals forces. 	Grot is the penalty associated
with freezing internal rotations of the protein and the ligand. It is largely
entropic in nature; a very simple estimate of its value is to assume that there
are three isoenergetic states for each rotatable bond, leading to a loss of RTln3
(∼ 0.7 kcal/mol) for each frozen rotatable bond. 	Gt/r is the loss in translational
and rotational degrees of freedom arising from the association of two bodies to
give a single body. It is often assumed to be constant for all ligands and so is
generally ignored when calculating relative binding energies for different ligands
to the same protein. 	Gvib is the free energy due to changes in vibrational modes.
It is hard to calculate and usually ignored.

Some very simple functions have been used for scoring. Two examples are
the DOCK function [Desjarlais et al. 1988] and the piecewise linear potential
[Gelhaar et al. 1995] whose functional forms are illustrated in Figure 8-5. The



170 An Introduction to Chemoinformatics

Figure 8-5. Two simple scoring functions used in docking. On the left is the basic scoring scheme
used by the DOCK program [Desjarlais et al. 1988]. On the right is the piecewise linear potential
with the parameters shown being those used to calculate steric interactions [Gelhaar et al. 1995].
(Adapted from Leach 2001.)

DOCK function scores 1.0 for atom pairs separated by 2.3–3.5 Å. Between 3.5
and 5.0 Å the score decays in an exponential fashion. Atom pairs separated by
more than 5.0 Å score zero. The piecewise linear potential divides the interaction
into attractive and repulsive regions with different sets of parameters for steric and
hydrogen bonding interactions. Despite the simple nature of these functions they
often perform as well as much more complex functions in comparative studies.
Force fields (see Appendix 2) can also be used for docking and scoring; however,
these only provide some of the contributions listed in Equation 8.1. Thus they may
perform well for certain systems but are not generally considered to be widely
applicable. One potential drawback of both the simple scoring functions and force
field scoring is that the function is typically evaluated for all pairs of ligand
and protein atoms that are within some cut-off distance. This calculation can be
speeded up by pre-calculating the potentials due to the protein on a regular grid
that covers the binding site [Meng et al. 1992]. This makes the calculation of the
function proportional to the number of ligand atoms, rather than being proportional
to the product of the number of ligand atoms and the number of protein atoms.

A key advance in the development of scoring functions for high-throughput
docking and virtual screening applications was the introduction by Böhm of a
linear function in which the various terms could be calculated rapidly [Böhm
1994]. The original formulation of this function is as follows:

	Gbind = 	G0 + 	Ghb
∑

h−bonds

f (	R, 	α)

+ 	Gionic
∑

ionic
interactions

f (	R, 	α) (8.2)

+ 	Glipo
∣∣Alipo

∣∣+ 	GrotNROT
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The function thus includes contributions from hydrogen bonding, ionic
interactions, lipophilic interactions and the loss of internal conformational
freedom of the ligand. The hydrogen bonding and ionic terms are both dependent
on the geometry of the interaction, with large deviations from ideal geometries
being penalised. The lipophilic term is proportional to the contact surface area
(Alipo) between protein and ligand involving non-polar atoms. The conformational
entropy term is directly proportional to the number of rotatable bonds in the ligand
(NROT).

The coefficients in Equation 8.2 were determined using multiple linear
regression on experimental binding data for 45 protein–ligand complexes. The
model reproduced the experimental data with a standard deviation of 1.7 kcal/mol.
A number of alternative functions have been derived that are based on this
approach; they differ in the experimental data used to derive the model and in
the terms included in the linear expansion [Head et al. 1996; Eldridge et al. 1997;
Böhm 1998; Murray et al. 1998]. A common modification of Böhm’s original
formulation is to divide the surface area contributions into three, corresponding to
polar/polar, polar/non-polar and non-polar/non-polar interactions.

An alternative strategy to the model-building approach introduced by Böhm is
to use a so-called knowledge-based method [Muegge and Martin 1999; Mitchell
et al. 1999; Gohlke et al. 2000; Sotriffer et al. 2002]. In such an approach, the
interaction potential between each ligand–protein atom pair is calculated as a
potential of mean force. This gives the free energy of interaction of the pair
of atoms as a function of their separation. These potentials of mean force are
calculated via statistical analyses of the distributions observed in known protein–
ligand complexes. An advantage of such an approach is that physical effects that
are difficult for other methods to model are automatically taken into account.
However, there are some technical issues with the derivation of such potentials,
such as the need to define a reference distribution and the treatment of solvation
effects [Muegge 2000; Gohlke and Klebe 2001].

There is as yet no universally applicable scoring function able to reproduce
experimental binding affinities with an acceptable error for a wide variety of
protein targets and ligand structures [Böhm and Stahl 1999; Bissantz et al. 2000;
Lyne 2002]. This is perhaps not so surprising when one considers that a change
of just 1.4 kcal/mol in the free energy corresponds to a tenfold change in the
free energy of binding. Small errors in the scoring function thus correspond
to large errors in the dissociation constant. Another important consideration
is that the ligands identified using virtual screening are most likely to have
rather modest potency, with dissociation constants in the micromolar range. This
contrasts with the ligands most commonly used to derive and test current scoring
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functions; these often bind very tightly to their target protein (with nanomolar
dissociation constants). In addition, the ligands currently available in the PDB
represent a rather limited chemical diversity, with a large proportion consisting of
cofactors, naturally occurring inhibitors, peptides and peptide mimetics. Moreover,
a disproportionate number of these complexes are for just a few proteins such
as the HIV protease and thrombin. There has been a gradual increase in the
rate at which protein–ligand complexes containing “drug-like” inhibitors become
available, but it will undoubtedly take some time before a truly comprehensive
knowledge base exists. A number of studies have been published assessing the
ability of various scoring functions to predict experimentally measured binding
affinities [So et al. 2000; Bissantz et al. 2000; Ha et al. 2000; Stahl and Rarey
2001]. One interesting development is the introduction of “consensus scoring”
schemes, in which the results from more than one scoring function are combined
[Charifson et al. 1999; Terp et al. 2001]. It has been shown that these approaches
give better results than just using any of the individual scoring functions.

3.3 Practical Aspects of Structure-Based Virtual Screening

Structure-based virtual screening is a computationally intensive and complex
procedure. Docking programs tend to have a multitude of possible parameters
that govern their operation; an inappropriate choice may lead to excessively long
computation times or even scientifically invalid results. It is usually advisable
to spend a reasonable amount of time investigating the various options and
performing validation runs on known structures to identify the most appropriate
settings.

The ligand structures for structure-based virtual screening usually originate as
a series of connection tables or SMILES strings. However, most docking programs
require a reasonable 3D conformation as the starting point. Factors that may
need to be considered when generating these starting conformations include the
geometry of undefined chiral centres, and the ionisation and tautomeric state of
the ligand. Some docking and scoring programs require partial atomic charges to
be computed for the protein and each ligand; again, the results may be dependent
upon the method chosen to perform this calculation.

Preparation of the protein is also important. Hydrogens are not usually visible
in protein x-ray structures but most docking programs require protons to be
included in the input file. Algorithms are available for automatically predicting the
proton positions within the protein itself [Brunger and Karplus 1988; Bass et al.
1992]; some of these can take account of potential hydrogen bonding networks
within the protein, but it is usually advisable to inspect the output carefully. The
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issue of ionisation and tautomeric state is also very relevant to the protein. Having
prepared the protein it is necessary to define the binding site. Again, automatic
procedures are available for performing this, but these are by no means foolproof.
Too small a binding site may mean that some potential ligands will be discarded
because they are deemed not to fit; too large and much computational time will be
spent exploring unproductive regions of the search space.

Given the computationally intensive nature of docking, the use of appropriate
computational filters prior to the docking to eliminate undesirable or inappropriate
structures is particularly important. Knowledge about possible binding modes may
also be used to enhance the efficiency of the docking procedure. For example, one
may wish all solutions to form a key hydrogen bonding or electrostatic interaction.
Most docking programs provide mechanisms for introducing such constraints.
One may be able to use a 3D pharmacophore search as a filter prior to the
docking. As discussed in Chapter 2, it is possible to define 3D pharmacophores
containing features such as “excluded regions” or “inclusion volumes” that provide
a reasonably accurate representation of the binding site. Alternatively, one may use
one of the faster docking programs to reduce the size of the data set prior to a more
thorough analysis using a slower but more accurate program.

Following the docking and scoring calculations it is then necessary to analyse
the results in order to identify those structures to progress to the next phase.
In many respects the analysis of a large-scale docking run is similar to the analysis
of a HTS run. The most basic approach would be to simply select the top-scoring
ligands for progression. However, it is generally advisable to undertake some form
of data analysis, coupled to 3D interactive visualisation of the ligands docked into
the binding site. Computational tools for filtering the final docked orientations
using relatively simple parameters related to protein–ligand complexes may also
be valuable in this final analysis and selection phase. In one such approach
[Stahl and Böhm 1998] properties such as the number of close protein–ligand
contacts and the fraction of ligand volume buried in the binding pocket were
computed. It was observed that the values of these properties for docked structures
often deviated significantly from the values for the corresponding protein–ligand
x-ray structures. This enabled a series of rules to be developed for the rapid
postprocessing of the docking results.

An increasing number of “success stories” describing the use of docking
in lead discovery are now appearing in the literature [Lyne 2002]. These
demonstrate the widespread adoption of the methodology but also highlight some
of the shortcomings, particularly with regards to the scoring functions currently
available. An interesting experiment was performed by Doman et al. (2002)
who compared HTS and docking. The biological target in this case was the
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enzyme Tyrosine Phosphatase-1B, a potential drug target for diabetes. A corporate
collection containing 400,000 compounds was tested using HTS and molecular
docking was used to virtually screen a database of 235,000 commercially available
compounds from which 365 were purchased for testing. Nearly 85 of the
compounds from the HTS run had an activity less than 100 µM (i.e. 0.021%); 127
of the 365 purchased compounds were active at this level (34.8%). Of particular
interest was that the two sets of active compounds were very different from each
other, suggesting that the two approaches complemented each other.

Docking and other structure-based design methods will undoubtedly continue
to be of much interest as the numbers of crystal structures of proteins of therapeutic
interest grows. Although docking is a computationally intensive procedure
compared to many other techniques it is very straightforward to implement in a
parallel computing environment by the simple expedient of splitting the data set
according to the number of processors available. This makes docking particularly
relevant for some of the latest computer hardware such as multiprocessor “farms”
and Grid-computing. The latter is particularly interesting, often involving the
use of spare processing capacity on the personal computers of a corporation’s
employees or even the entire internet [Davies et al. 2002; Richard 2002].

4. THE PREDICTION OF ADMET PROPERTIES

It is not sufficient for a drug molecule to bind tightly to its biological target in
an in vitro assay. It must also be able to reach its site of action in vivo. This usually
involves passing through one or more physiological barriers such as a cell membrane
or the blood-brain barrier. The molecule must remain in the body for an appropriate
period of time to give the desired effect but must ultimately be removed from the
body by metabolism, excretion or other pathways. Moreover, neither the drug nor
its metabolites should be toxic. ADMET (Absorption, Distribution, Metabolism,
Elimination and Toxicity) is often used to refer to such aspects of drug discovery;
ADMET properties were traditionally considered during the development phase
of a drug candidate. There is now increasing interest in taking ADMET properties
into account at an earlier stage during drug discovery, in recognition that it may
be better (and cheaper) to identify and address any issues earlier in the process
rather than later [Hodgson 2001; van de Waterbeemd et al. 2001].

Various ADMET properties have attracted particular attention from the
computational chemistry and QSAR communities [Ekins et al. 2000; van de
Waterbeemd 2002; Clark and Grootenhuis 2002; Beresford et al. 2002]. The
desired route of administration is usually via the oral route and so the assessment
of oral bioavailability is important [Veber et al. 2002]. Of the many factors
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that may enable a substance to be orally bioavailable, permeability through the
intestinal cell membrane is often a key requirement [Egan and Lauri 2002].
Another physiological barrier is the blood-brain barrier between the systemic
circulation and the brain. The ability to pass through this barrier is a desired
property in the case of biological targets in the brain; for other targets the opposite
property might be required in order to reduce possible side effects [Norinder and
Haeberlein 2002]. In addition to these passive mechanisms of permeability there
also exist several transport mechanisms which actively promote (or reduce) the
absorption of substances across these barriers; the P-glycoprotein (PGP) efflux
pump has been subjected to particular attention [Stouch and Gudmundsson 2002].
Aqueous solubility is a key physicochemical property upon which properties
such as oral bioavailability depend [Lipinski 2000; Jorgensen and Duffy 2002].
The cytochrome P450 enzymes play a key role in metabolism and so it is of
considerable interest to determine which structures will be substrates or inhibitors
of these enzymes [de Groot and Ekins 2002]. Finally, toxicity prediction is a
problem of long-standing interest [Greene 2002].

A common problem with many developability properties is the paucity of
experimental data, especially human in vivo data. This can make it very difficult
to build reliable models that can be applied to a wide variety of chemical classes.
For this reason there has been significant interest in the identification of in vitro
systems that are surrogates for the “real” system. An example is the use of Caco-
2 cells (derived from a human intestinal cell line) to measure permeability as a
surrogate for the human absorption process.

Many of the computational models published to date are “traditional” QSAR
models derived using multiple linear regression. However, other methods such
as PLS, decision trees, discriminant analysis and neural networks are being
increasingly employed. As we have discussed these methods in previous chapters
the focus of our subsequent discussion will be on some of the unique descriptors
that have been used to construct ADMET models.

4.1 Hydrogen Bonding Descriptors

Several ADMET models are dependent upon the hydrogen bonding capacity
of a molecule. In the simplest case this involves simply counting the numbers of
donors and acceptors as in Lipinski’s “rule of five”. More sophisticated measures
of hydrogen bonding capacity have also been developed. Abraham has proposed
a mechanism for calculating the overall hydrogen bonding acidity or donor
propensity (A) and basicity or acceptor propensity (B) of any solute molecule
[Abraham et al. 2002]. These parameters were originally obtained by fitting to
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relevant experimental data such as partition coefficients measured for different
water-solvent systems or by analogy to closely related compounds. In addition,
a fragment-based approach has been developed with 51 fragment values for A
and 81 fragment values for B [Platts et al. 1999]. This is more suited to virtual
screening. In the Abraham approach these hydrogen bonding descriptors are
then combined with other descriptors using multiple linear regression to derive
QSAR equations for a wide variety of physicochemical and ADMET properties
[Abraham 1993; Abraham and Platts 2001]. An alternative approach to hydrogen
bonding was taken by Jorgensen and colleagues based originally on Monte Carlo
simulations of solutes in water. From these simulations a variety of descriptors
were derived, including the average number of hydrogen bonds formed over the
course of the simulation between the solute and solvent (counting solute donor and
solute acceptor hydrogen bonds separately). Note that these hydrogen bond counts
can be non-integral. These descriptors were then combined using multiple linear
regression to derive models of properties such as solubility, the octanol/water
partition coefficient and blood-brain barrier permeability [Duffy and Jorgensen
2000a, b]. A drawback of this simulation-based approach is that it is slow, and
so algorithms were devised to estimate these descriptors rapidly, particularly the
hydrogen bond counts. These algorithms take into account the electronic and
steric environment of possible hydrogen bonding sites and the possibility of
intramolecular hydrogen bonding [Jorgensen and Duffy 2002].

4.2 Polar Surface Area

The polar surface area is another molecular property which has proved
popular in the derivation of ADMET models, especially for the prediction of
oral absorption and brain penetration. The polar surface area is defined as the
amount of molecular surface arising from polar atoms (nitrogen and oxygen atoms
together with their attached hydrogens; some definitions also include sulphur
atoms and their attached hydrogens). One of the earliest uses of polar surface
area in ADMET modelling employed a rather complex and time-consuming
procedure for its calculation involving molecular dynamics simulations to explore
the conformational space of the molecule, conformations being extracted at
predefined intervals. The polar surface area is calculated for each of these
structures, the value for the whole molecule being equal to the average for each of
the snapshots, weighted by their energies [Palm et al. 1996]. It was subsequently
demonstrated that acceptable models could be obtained using the polar surface
area of a single conformation produced by a structure-generation program such
as CONCORD or CORINA [Clark 1999], a much more rapid procedure. Further
speed enhancements were obtained with the development of a fragment-based
model wherein the polar surface area of the molecule is given by the weighted
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Figure 8-6. The relationship between human fractional absorption and the polar surface area
[Clark 1999]. It was suggested that a cut-off around 140 Å2 was associated with poor absorption.

sum of the contributions from each of the fragments present [Ertl et al. 2000]. This
latter value can be calculated from the molecular graph and so is extremely fast,
yet shows an excellent correlation with the more time-consuming methods based
on the 3D structure.

One example of the use of polar surface area in deriving models is
the following equation to describe Caco-2 permeability (log Papp) [van de
Waterbeemd et al. 1996]:

log Papp = 0.008 × MW − 0.043 × PSA − 5.165 (8.3)

When human absorption data were examined it was observed that a sigmoidal
relationship appeared to exist between a molecule’s polar surface area and its
fractional absorption, suggesting that a polar surface area greater than 140 Å2

would be associated with poor absorption [Clark 1999] (see Figure 8-6). Such a
simple rule is clearly well suited to large-scale virtual screening.

4.3 Descriptors Based on 3D Fields

One family of descriptors that appears to have particular utility for the
prediction of pharmacokinetic properties is the Volsurf descriptors developed by
Cruciani et al. [2000]. These descriptors are based on 3D molecular fields similar
to those used for the calculation of molecular similarity (as discussed in Chapter 5).
They are also a crucial component of the CoMFA method for the construction of
3D-QSAR models, considered in Chapter 4. The first part of the Volsurf procedure
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Figure 8-7. Schematic illustration of the calculation of an integy moment, defined as the vector
from the centre of mass to the centre of the hydrophilic or hydrophobic region contoured at a
particular energy level. In this case the surface shown is the contour produced using the water
probe at −4.0 kcal/mol for the molecule shown.

is to compute the fields. This is done by placing each molecule into a rectangular
3D grid. A probe group is placed at each grid vertex and the interaction energy
between the probe and the molecule is calculated. Various methods can be used
to calculate these interaction energies; Volsurf uses the GRID program [Goodford
1985], which has been very widely used for the analysis of protein binding sites
in structure-based design. Three probes are typically used: the water probe, the
hydrophobic probe (known as the DRY probe within the GRID program) and the
oxygen carbonyl probe. These molecular fields are then transformed into a set of
molecular descriptors which quantify the molecule’s overall size and shape and
the balance between hydrophilicity, hydrophobicity and hydrogen bonding. They
include, for example, the volumes of the 3D surfaces obtained by contouring the
interaction maps with the water and hydrophobic probes at a number of different
energy levels. Integy moments are also computed; these are similar to dipole
moments and reflect the degree of imbalance between the molecule’s centre of
mass and the location of its hydrophilic and hydrophobic regions (Figure 8-7).
The amphiphilic moment is a vector from the centre of the hydrophobic domain to
the centre of the hydrophilic domain; this is believed to be related to the ability of
the molecule to permeate a membrane.

Models are then built using methods such as PCA and PLS. An example is the
model for predicting blood-brain barrier permeation [Crivori et al. 2000]. Training
and test sets containing 110 and 120 structures, respectively, were identified from
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the literature. The GRID and Volsurf calculations resulted in 72 descriptors for
each molecule. One of the resulting models was based on the three statistically
significant principal components from the PCA. Indeed, it was found that the first
principal component alone was able to provide a good discrimination between
the brain-penetrating and non-penetrating compounds in the training set. This
model was able to correctly classify 90% of the penetrating compounds in the
test set and 65% of the non-penetrating compounds. A second model based on
the two significant latent variables from the PLS proved even better, with more
than 90% prediction accuracy. Two features were of particular interest from this
analysis. First, examination of some of the compounds that were incorrectly
predicted by the models revealed structures known to penetrate the blood-brain
barrier by mechanisms other than passive permeation (e.g. via transporters) and
highlighted some cases of possible mis-classification in the literature. Second, it
was possible to determine the contribution of each of the descriptors to the models.
This revealed that related descriptors of polarity (e.g. hydrophilic regions and
hydrogen bonding) were inversely correlated with permeability whilst descriptors
of hydrophobic interactions were directly correlated, though to a lesser extent.

The problem of predicting potential P450 liabilities has been tackled using
a variety of approaches. These include the development of “traditional” QSAR
models together with 3D pharmacophore models [de Groot and Ekins 2002] but
more recent methods have taken advantage of the growing body of knowledge
concerning the 3D structures of these important enzymes. A number of groups
have now published x-ray structures of several P450 isoforms, in some cases with
ligands bound. This information can be used for docking studies as well as more
complex calculations. The structures have also been used to develop predictive
models of a molecule’s site(s) of metabolism by a variety of P450 enzymes. The
metasite program [Cruciani et al. 2005] calculates the probability that an atom in
a molecule is a potential site of metabolism as the product of two factors. The
first of these is an accessibility term that represents the ability of the ligand to be
positioned within the enzyme active site so that the atom is exposed towards the
catalytic heme group. This accessibility term is computed using GRID molecular
fields of both protein and ligand. The second contribution is a reactivity term that
is computed using molecular orbital calculations and depends on the ligand 3D
structure and on the specific mechanism of reaction. The result is a ranking of the
probabilities, wherein the user can identify which are the most likely regions in
the molecule to undergo metabolism by each of the different P450 enzymes. In the
published studies the method predicted the correct site of metabolism within the
top two suggestions in about 85% of the cases and in 80% of the cases the correct
isoform involved was correctly predicted. However, as the authors pointed out, the
methodology is not able to predict the relative rate of metabolism of a compound
across the different P450 isoforms.
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4.4 Toxicity Prediction

The prediction of toxic liabilities is recognised as a particularly challenging
problem due in part to the multitude of possible toxicity mechanisms. It may
be more feasible to focus on a single toxicological phenomenon and/or to
examine just a single class of compounds (a classic example being studies of
the carcinogenicity of polycyclic aromatic hydrocarbons). Nevertheless, several
attempts have been made to try and predict more general toxicity. One of the most
widely used methods is the DEREK system (DEREK is an acronym for Deductive
Estimation of Risk from Existing Knowledge). DEREK is an expert- or rule-based
system [Sanderson and Earnshaw 1991]. Central to DEREK is a set of rules that are
derived from experts in the field and from the literature. These rules are based on
a list of chemical substructures that have been related to specific toxic effects. The
rules are combined with an “inference engine” that determines which, if any, of the
rules applies to the molecule in question. The output displayed to the user indicates
which of the rules apply to the molecule together with background information
such as relevant literature references. If desired, new rules can be added by the
user to supplement those supplied with the system.

The use within DEREK of rules derived from human experts contrasts nicely
with an alternative approach that uses the CASE and MULTICASE methods.
As described in Chapter 7, these automatically generate substructure-based rules
from training sets of active and inactive compounds and they have been applied
to a wide variety of toxicity-related measurements [Rosenkranz et al. 1999].
An additional difference between these two approaches is that whereas DEREK
only identifies “activating” fragments (i.e. substructures that give rise to a toxic
effect), the CASE/MULTICASE approach is also in principle able to identify both
activating and deactivating fragments. A third widely used system, TOPKAT, is
based on a more traditional QSAR approach using electrotopological descriptors
[Gombar and Enslein 1995]. This system can also distinguish toxic and non-toxic
compounds and provides tools to indicate the level of confidence in the prediction,
based on the similarity to molecules in the training set and its coverage. These
and other programs have been subjected to a number of evaluations to compare
their performance [Durham and Pearl 2001; Greene 2002]. Most of the studies
performed to date suggest that care is still required when using these systems
and that the involvement and intervention of human experts is desirable. Some
improvements in performance can sometimes be achieved by combining the results
from more than one program in a manner reminiscent of the consensus scoring
described above for docking.
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5. SUMMARY

Virtual screening methods are central to many chemoinformatics problems.
Most design, selection and analysis procedures use at least one, and often several,
virtual screening steps. The numbers of molecules that can be evaluated using
virtual screening continues to increase with the advent of new algorithms and
improved computer hardware. Nevertheless, in some areas there remain key
issues, such as the reliability and accuracy of the methods for scoring the
results of docking and the models for predicting ADMET properties. The lack
of sufficient quantities of reliable and consistent experimental data is one of the
main hindrances to the development of better models. One illuminating paper that
highlights a number of such issues was the analysis by Stouch et al. [2003] of
the apparent “failure” of several in silico ADMET models. Four models had been
developed by an external software vendor. However, when tested on internal data
each model was found to be deficient, for a variety of reasons. In one case, the data
used to construct the model (of hERG inhibition) was taken from the literature
and as a consequence derived from experiments in many different laboratories
using different protocols and experimental conditions. In the second evaluation
the model was built on a series of 800 marketed drugs but it was found that these
occupied a different region of chemical space to that of the molecules used in the
evaluation. The third model was designed to give predictions of P450 activity but
not in regions of activity relevant to practical drug discovery. The fourth test was
of a solubility model where there were some potential differences between the
experimental protocols used in the generation of the data upon which the model
was built and the evaluation data set. More importantly, only a small range of
solubilities was used to build the model with a lower limit of 1 µM, which as the
authors state “is, sadly, a solubility value to which only a few welcome Discovery
compounds can aspire, much less exceed”.





Chapter 9

COMBINATORIAL CHEMISTRY AND
LIBRARY DESIGN

1. INTRODUCTION

The invention of combinatorial chemistry in the late 1980s and early 1990s
led to the development of a wide variety of automated methods for chemical
synthesis [Terrett 1998; Lebl 1999]. These methods range from complex robots
designed for the synthesis of large combinatorial libraries to “low-tech” equipment
that enables basic functions such as heating or separation to be applied to a
small number of samples. The common feature of these techniques is that they
enable tasks previously applied on a molecule-by-molecule basis to be applied to
many molecules simultaneously, greatly increasing the rate at which new chemical
entities can be made. The early work in combinatorial chemistry was driven by the
needs of the pharmaceutical industry, but there is now much interest in automated
synthesis techniques in other areas of chemistry such as materials science [Xiang
et al. 1995; Danielson et al. 1997].

The origins of combinatorial chemistry lie in the use of solid supports for
peptide synthesis. By coupling the growing peptide to a solid support such as
a polystyrene bead it is possible to use excess reagents and so ensure that the
reaction proceeds to completion. Any excess reagent is simply washed away. In
the original applications of solid-phase chemistry to peptide synthesis the goal
was generally the synthesis of a single molecular target. A key breakthrough was
the recognition that this methodology could be used to generate large numbers
of molecules using a scheme known as split–mix. This is illustrated in Figure
9-1; it starts with a set of reagents (which we may also refer to as “monomers”),
each of which is coupled to the solid support. These are then all mixed together
and divided into equal-sized aliquots for reaction with the second reagent. The
products from this reaction are then mixed together and divided for reaction with
the third reagent and so on. If the numbers of reagents at each step are n1, n2, n3,
etc. then the total number of molecules produced is the product n1n2n3. The size
of the library thus increases exponentially with the number of reagents – hence the
use of the term “combinatorial”.

183
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Figure 9-1. Illustration of the split–mix approach to combinatorial synthesis, using three sets
each containing three monomers. (Adapted in part from Leach 2001.)

The original split–mix method is capable of producing extremely large
libraries, but it does suffer from some drawbacks. A particular limitation is that due
to the various mixing stages the identity of the product on each bead is unknown
(except for the final reagent). It is important to note, however, that each bead
contains just one discrete chemical entity. Much progress has subsequently been
made in the technology for automated synthesis and purification since the first
reports were published. These developments have enabled many of the limitations
of the early combinatorial techniques to be overcome, making automated synthesis
methods commonplace in both industrial and academic laboratories

In this chapter we will consider both theoretical and practical facets of library
design. Some of these are unique to libraries, such as enumeration and the
combinatorial constraints imposed on monomer selection methods. Other aspects,
such as virtual screening, have been considered in detail in earlier chapters. A
key area that continues to be debated concerns the balance between diversity and
focus when designing libraries. We conclude with some examples taken from the
literature to indicate the range of applications of library design.
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2. DIVERSE AND FOCUSSED LIBRARIES

The initial emphasis in combinatorial chemistry was on the synthesis of as
many “diverse” compounds as possible, in the expectation that a larger number of
molecules would inevitably lead to more hits in the biological assays. This was not
observed in practice; “historical” compounds built up over many years generally
performed much better than the new libraries. Moreover, the hits produced from
combinatorial chemistry often had properties that made them unsuitable as lead
compounds (e.g. they were too large, too insoluble, or contained inappropriate
functional groups). This is illustrated in Figure 9-2 which shows the molecular
weight profile of an aminothiazole library designed to be “diverse” superimposed
on the corresponding profile of compounds in the WDI. It can be seen that the
molecules in the library tend to have higher molecular weights than is seen in
known drug molecules.
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Figure 9-2. Comparison of the molecular weight distributions of an aminothiazole library
designed to be diverse with that for the WDI. The library of 450 products was constructed from
15 α-bromoketones and 30 thioureas selected from a virtual library of 12,850 potential products
(74 α-bromoketones × 174 thioureas). Diversity was assessed using the MaxSum score based on
Daylight fingerprints and the cosine coefficient (see Chapter 5 for more details of this diversity
measure). The distribution for the library is shifted significantly towards the inclusion of higher
molecular weight species.
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Since the early days of combinatorial chemistry, two trends have emerged. The
first is towards the design of smaller, more focussed libraries that incorporate as
much information about the therapeutic target as possible. Of course, the amount
of information that is available will vary from one drug discovery project to
another. At one extreme, when the 3D structure of the target protein is available,
combinatorial libraries (and screening libraries in general) may be designed to
fit the active site using docking methods. If some active compounds are known
then libraries may be designed using pharmacophoric approaches, 2D similarity
or physicochemical properties. A recent trend is to focus libraries on a family of
targets, such as proteases or kinases, in which case the design should incorporate
properties that are known to be important for all targets in the family. When little is
known about the target then more diverse libraries may be relevant. Such libraries
are sometimes referred to as primary screening libraries and are designed to give
a broad coverage of chemistry space so that they can be screened against a range
of structural targets. In general, a balance between diversity and focus is needed,
with the amount of diversity required being inversely related to the amount of
information available about the target [Baldwin 1996; Hann and Green 1999].
The difficulty lies in quantifying these factors and achieving the correct balance
between them.

The second trend to emerge is based on the realisation that compounds within
combinatorial libraries, whether they are diverse or focussed, should have “drug-
like” physicochemical properties (discussed in Chapter 8) so that they constitute
good start points for further optimisation.

2.1 Screening Collection and Set Design

A framework to help to achieve this balance between diversity and focus
when designing libraries or when constructing sets of compounds or indeed whole
screening collections has been provided by the mathematical model developed
by Harper et al. [2004] (a related method was also published by Nilakantan
et al. [2002]). This model starts from two assumptions about screening in drug
discovery. The first is that once a hit has been found then structurally similar
molecules will be selected using substructure and/or similarity searching methods
for further testing in order to provide evidence of a structure–activity relationship.
The second assumption is that the overall goal is to find multiple lead series from
the screen.

The chemical space is assumed to be clustered or partitioned in some way into
structural clusters. Two parameters are introduced into the model. These are the
probability that a randomly selected molecule from some cluster i will test active
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(αi ) and the probability that the cluster will contain a lead molecule (πi ). A lead
molecule is more than just a “hit”; it is a compound with the correct combination
of activity, physicochemical, ADMET properties and novelty to provide a good
chance of becoming a marketed drug. Based on these two parameters it is possible
to derive a number of useful quantities, including the expected number of lead-
containing clusters in which leads are found, E :

E =
p∑

i=1

πi

[
1 − (1 − αi )

Ni
]

(9.1)

where Ni compounds are screened from p clusters. In addition the probability of
finding no leads at all (a quantity that should be as close to zero as possible) is:

Pnoleads =
p∏

i=1

[
1 − πi

(
1 − (1 − αi )

Ni
)]

(9.2)

The consequences of different ways to construct a compound collection can
then be derived. For example, if one uses values for πi of 0.00001 (a value typical
for a set of “diverse” compounds screened against tractable drug targets) and
αi of 0.3 [Martin et al. 2002] then for a set of 1 million compounds there is a
probability of finding no leads greater than 0.9 if the set comprises clusters of size
100. However, if the collection has two compounds per cluster then the probability
of finding no leads drops to less than 0.08. The model enables the optimal design
of various types of compound sets to be determined, be they screening collections,
focussed sets or combinatorial libraries. Moreover, the model enables a diversity
score to be derived that conforms to all but one of the criteria proposed by
Waldman et al. [2000].

3. LIBRARY ENUMERATION

The analysis of a combinatorial library obviously requires computer
representations of the molecules contained within it. Given the large numbers
of compounds that are usually involved, it is not practical to input each product
molecule individually. Enumeration refers to the process by which the molecular
graphs (e.g. connection tables or SMILES strings) of the product molecules are
generated automatically from lists of reagents. Enumeration may be required for
both virtual libraries and for libraries that have actually been synthesised.
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Figure 9-3. Illustration of the fragment marking approach to library enumeration.

There are two general approaches to enumeration. The first of these is called
fragment marking and considers the library to be composed of a central core
template with one or more R groups. The core template must be common to
all members of the library; different product structures correspond to different
combinations of R groups. In order to enumerate the library, bonds are created
between the template and the appropriate R groups. The first task is to generate
the R group structures from the corresponding reagents. This is most easily
achieved by replacing the appropriate reactive group by a “free valence” to give a
“clipped” reagent. This procedure is illustrated in Figure 9-3 for the enumeration of
aminothiazoles from α-haloketones and thioureas in which a central core template
corresponding to the thiazole ring is constructed with three attachment points. The
three sets of clipped fragments would then be generated from the reagent structures
for combination with the core template to produce complete product structures.

The alternative to fragment marking is the reaction transform approach. Central
to this method is the transform itself, which is a computer-readable representation
of the reaction mechanism. The enumeration program takes as input the reagent
structures themselves and applies the transform to generate the products. The
reaction transform approach thus more closely mimics the actual synthetic process.
As can be seen from the example in Figure 9-4 it is necessary to ensure that the
transform is defined so that the appropriate atoms are matched between reagents
and products (i.e. according to the reaction mechanism). This may be achieved
using atom mapping, where pairs of corresponding atoms in the reagents and
products are labelled, as shown (see also the discussion on reaction databases in
Chapter 1).
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Figure 9-4. Illustration of library enumeration using the reaction transform approach. The
integers give the mapping between atoms in the reactants and the products.

Both the fragment marking and the reaction transform approaches have
advantages and disadvantages. Fragment marking generally enables the
enumeration to be performed very quickly once the core template and the R
group fragments have been defined. It is particularly useful when the library
can be naturally defined as a “core plus R group” and when the reagents can
be easily clipped using some form of automated procedure. In other cases,
however, it can be difficult to define a common core and it may prove difficult
to generate the fragments automatically. Certain types of reactions (e.g. Diels–
Alder reactions) may not be handled properly by a simple fragment marker, giving
rise to extraneous and incorrect structures. The reaction transform method by
contrast more closely corresponds to the actual chemical synthesis and so it may
prove more intuitive to bench scientists, especially if delivered via an easy-to-
use interface such as the web [Leach et al. 1999]. Some expertise is required
to compose efficient transforms, but once done they can be reused many times
without further alteration.

A more recent development is the use of Markush-based approaches to
enumeration, building upon research into the representation and search of the
Markush structures found in patents (see Chapter 1). This approach is ideally
suited to combinatorial libraries, particularly where a common core can be
identified. The Markush approach [Downs and Barnard 1997] recognises that
certain subsets of the product structures in the library may have features in
common (e.g. a subset of the R groups at a particular position may contain a
benzoic acid). The method constructs a compact computational representation of
the library from which the structures of the enumerated library can be generated
very rapidly.

4. COMBINATORIAL LIBRARY DESIGN
STRATEGIES

In most combinatorial reaction schemes there are many more monomers
available than can be handled in practice. For example, consider a benzodiazepine
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library constructed from three monomer pools, as shown in Figure 9-5. It is easy
to find many monomers for each position of variability by searching a database of
available reagents such as the ACD [ACD]. The virtual libraries in such cases can
easily contain millions if not billions of products; much larger than can actually
be synthesised in practice. Thus, a key issue in combinatorial library design is the
selection of monomers such that the resultant library is of a manageable size and
has the desired properties, whether it is to be diverse or focussed or should exhibit
a balance between the two.

The two main strategies for combinatorial library design are known as
monomer-based selection and product-based selection.

4.1 Monomer-Based Selection

In monomer-based selection optimised subsets of monomers are selected
without consideration of the products that will result. Consider a hypothetical
three-component library with 100 monomers available at each position of
variability, where the aim is to synthesise a diverse 10 × 10 × 10 combinatorial
library. In monomer-based selection this would involve selecting the 10 most
diverse monomers from each set of monomers. In general, there are

N !
n!(N − n)! (9.3)

subsets of size n contained within a larger set of N compounds. For example,
there are more than 1013 different subsets of size 10 from a pool of 100
monomers. It is not possible to examine all of these. We discussed the subset
selection problem in Chapter 6 in the context of selecting compounds for screening
where the techniques of dissimilarity-based compound selection, clustering and
partitioning were introduced, together with related optimisation methods. Any of
these techniques can also be used in the monomer-based selection approach.
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An early example of monomer-based design is described by Martin and
colleagues and used experimental design. Diverse subsets of monomers were
selected for the synthesis of peptoid libraries (peptoids are synthetic oligomers
with a peptide backbone but with the side chain attached to the nitrogen atom
rather than the alpha-carbon atom) [Martin et al. 1995]. The diversity measure
included features such as lipophilicity, shape and chemical functionality and uses
a variety of descriptors including ClogP, topological indices, Daylight fingerprints
and atom layer properties based on receptor recognition descriptors. Diverse
subsets of monomers were selected using D-optimal design.

4.2 Product-Based Selection

In product-based selection, the properties of the resulting product molecules
are taken into account when selecting the monomers. Having enumerated the
virtual library any of the subset selection methods introduced in Chapter 6 could
then in principle be applied. This process is generally referred to as cherry-picking
but it is synthetically inefficient insofar as combinatorial synthesis is concerned.
Synthetic efficiency is maximised by taking the combinatorial constraint into
account and selecting a combinatorial subset such that every reagent selected
at each point of variation reacts with every other reagent selected at the other
positions.

Product-based selection is much more computationally demanding than
monomer-based selection. The number of combinatorial subsets in this case is
given by the following equation:

R∏

i=1

Ni !
ni !(Ni − ni )! (9.4)

where R is the number of positions of variability and there are ni monomers to be
selected from a possible Ni at each substitution position. Thus, there are almost
1040 different 10 × 10 × 10 libraries that could be synthesised from a 100 ×100 ×
100 virtual library. The selection of combinatorial subsets has been tackled using
optimisation techniques such as simulated annealing and genetic algorithms as will
be discussed in detail below.

Despite the greater computational complexity of performing product-based
selection compared to monomer-based selection it can be a more effective method
when the aim is to optimise the properties of a library as a whole, such as
diversity or the distribution of physicochemical properties. For example, it has
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been shown that more diverse libraries result if selection is performed in product-
space rather than in monomer-space [Gillet et al. 1997; Jamois et al. 2000]. In
addition, product-based selection is usually more appropriate for focussed libraries
which require consideration of the properties of the product structures.

5. APPROACHES TO PRODUCT-BASED LIBRARY
DESIGN

A general strategy for product-based library design involves the following three
steps. First, lists of potential reagents are identified (e.g. by searching relevant
databases), filtered as appropriate, and the virtual library is enumerated. In the
second step the virtual library is subjected to virtual screening to evaluate and score
each of the structures. In the third stage the reagents to be used in the actual library
for synthesis are selected using the results from the virtual screening together with
any additional criteria such as the degree of structural diversity required, or the
degree of similarity/dissimilarity needed to existing collections. This three-stage
process is illustrated in Figure 9-6.

The first two stages of monomer identification and enumeration, and virtual
screening, have been described above and in Chapter 8. It is important to note
that it may be possible to reduce significantly the size of the virtual library by
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Figure 9-6. Three-stage procedure for library design.
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eliminating from consideration monomers that can be unambiguously identified
as being inappropriate. For example, monomers that contain functionality known
to be incompatible with the proposed reaction scheme can be eliminated, as can
monomers that are unavailable or cannot be purchased in time. This is the initial
“filtering” step in Figure 9-6.

The final, monomer selection stage is typically implemented using
optimisation techniques such as GAs or simulated annealing [Agrafiotis 1997;
Brown et al. 2000; Zheng et al. 1998, 2000]. By way of example, the SELECT
program [Gillet et al. 1999] is based on a GA in which each chromosome encodes
one possible combinatorial subset. Assume a two component combinatorial
synthesis in which n A of a possible NA first monomers are to be reacted with
nB of a possible NB second monomers. The chromosome of the GA thus contains
n A + nB elements, each position specifying one possible monomer. The fitness
function quantifies the “goodness” of the combinatorial subset encoded in the
chromosome and the GA evolves new potential subsets in an attempt to maximise
this quantity.

In some cases the virtual library is too large to allow full enumeration
and descriptor calculation, making product-based combinatorial subset selection
unfeasible. A number of methods have been proposed to try to overcome this
problem. For example, the Markush-based enumeration strategy described above
enables certain types of product descriptors to be calculated very rapidly without
actually constructing the products themselves [Barnard et al. 2000]. In the first
phase, descriptors are calculated for each of the monomers in the library. In the
second phase the monomer descriptors are combined together to generate the
descriptor for the product. Such an approach is applicable to any properties that
are additive, such as molecular weight, counts of features such as donors and
acceptors, calculated logP and even 2D fingerprints. An alternative approach is
to use random sampling techniques to derive a statistical model of the property
under consideration; in addition to the estimation of molecular properties such an
approach may be used for monomer selection and to prioritise different library
scaffolds [Beroza et al. 2000].

Alternative approaches to product-based library design have been developed
that do not require enumeration of the entire virtual library. These methods
have been termed molecule-based methods to distinguish them from library-
based methods [Sheridan et al. 2000] and they are appropriate for the design of
targeted or focussed libraries. For example, the method developed by Sheridan
and Kearsley [1995] uses a GA in which each chromosome encodes a product
molecule (rather than a combinatorial library). The fitness function measures
the similarity of the molecule encoded by a chromosome to a target molecule.
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When the GA has terminated the entire population of chromosomes is analysed
to identify monomers that occur frequently across all the molecules in the
population. The frequently occurring monomers could then be used to construct
a combinatorial library. The method was tested on a tripeptoid library with
three positions of variability; 2,507 amines were available for two of the
substitution positions and 3,312 for the third position. This gives a virtual library
of approximately 20 billion potential tripeptoids. The method was able to find
molecules that were very similar to given target molecules after exploring only a
very small fraction of the total search space.

The molecule-based method is a relatively fast procedure, especially when
optimisation is based on 2D properties, since the fitness function involves a
pairwise molecular comparison rather than the analysis of an entire library, as
is the case in library-based methods. In these approaches, however, there is no
guarantee that building libraries from frequently occurring monomers will result
in optimised libraries, nor is it possible to optimise properties of the library as a
whole [Bravi et al. 2000].

6. MULTIOBJECTIVE LIBRARY DESIGN

The approaches to library design methods described so far have generally
been concerned with the optimisation of a single objective, such as diversity
or similarity to a target. However, it is usually desirable to optimise multiple
properties simultaneously. For example, in addition to achieving a balance between
diversity and focus, it may be desired to design libraries with “drug-like”
physicochemical properties from readily available, inexpensive reagents and so
on. Such a situation is referred to as multiobjective library design.

Most approaches to multiobjective library design combine the different
properties via a weighted-sum fitness function. For example, in the SELECT
program different objectives can be specified by the user who also assigns their
relative weights. To optimise the diversity whilst achieving a particular molecular
weight profile one may use a fitness function of the following form:

f = w1(1 − d) + w2	MW (9.5)

where d is diversity (i.e. minimising (1−d) is equivalent to maximising diversity)
and 	MW is the difference between the molecular weight profile of the library and
that which is desired (e.g. a profile derived from a set of known active compounds).
The aim is therefore to minimise both terms. When this function is used to design
an aminothiazole library, the molecular weight profile of the resulting library is
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Figure 9-7. Molecular weight distribution for a 15 × 30 aminothiazole library designed to be
both diverse and to achieve a molecular weight distribution that matches that of the WDI.

shown in Figure 9-7. This should be compared with the profile in Figure 9-2 which
is for an equivalent library designed using the diversity function alone. It is clear
that the library designed with the multiobjective function has a much more “drug-
like” profile than is the case for the library optimised on diversity alone. The
improved profile is achieved at the expense of some diversity but this may be
deemed an acceptable compromise, especially as it corresponds to the removal of
“non-drug-like” compounds.

The weighted-sum approach is easily extended to include additional
physicochemical properties such as the distribution of ClogP, and any other
calculable properties such as cost. A similar approach to multiobjective library
design has been implemented in several other library design programs [Good and
Lewis 1997; Brown et al. 2000; Agrafiotis 2002]. Tailoring combinatorial libraries
in this way should increase the chances of finding useful lead compounds.

6.1 Multiobjective Library Design Using a MOGA

Despite the obvious benefits of optimising libraries over several properties
simultaneously, in practice it can be difficult to find an appropriate compromise via
a weighted-sum fitness function. Often, several trial-and-error runs are required.
A further disadvantage is that each run results in a single solution, when in fact an
entire family of solutions exists.

A way to overcome these limitations is to use a Multiobjective Genetic
Algorithm (MOGA) [Fonseca and Fleming 1993; Coello et al. 2002]. In a MOGA,
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Figure 9-8. The Pareto-optimal solutions for a two-objective minimisation problem are shown in
black. Solutions A and B are both non-dominated and so they are given a rank of zero. Solution
C is dominated by both A and B and hence it is given a rank of two.

each objective is handled independently without the need for summation and the
use of relative weights. A MOGA attempts to identify a Pareto-optimal set of
solutions where a Pareto-optimal solution, also called a non-dominated solution,
is one for which no other solution exists in the population that is better in
all objectives. The weighted-sum fitness function used in a traditional GA is
replaced by fitness based on dominance; an individual is given a rank according
to the number of individuals in the population by which it is dominated as
shown in Figure 9-8. The fitness of an individual is then calculated such that
all individuals with the same rank have the same fitness value, with the least
dominated individuals being preferred. The result is a family of solutions, each
representing a different compromise between the individual objectives. These
solutions define the Pareto surface, an example of which is shown in Figure 9-9
for our aminothiazole library which has been optimised using a MOGA on both
diversity and on the molecular weight profile. This method allows the relationships
between the objectives to be explored in a single run, thereby removing the trial-
and-error approach that is required with a weighted sum. The library designer can
therefore make an informed choice about any compromises that may need to be
made between the objectives [Gillet et al. 2002a, b].

7. PRACTICAL EXAMPLES OF LIBRARY DESIGN

In this final section we will give two examples of library design, taken from
the literature. The examples have been chosen to illustrate some of the aspects of
current library design that have been discussed above.
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Figure 9-10. The scaffold used in the design of inhibitors of Cathepsin D.

7.1 Structure-Based Library Design

Our first example concerns a library designed to find inhibitors of Cathepsin D,
an aspartyl protease that has been implicated in tumour metastasis in breast cancer,
melanoma metastasis and Alzheimer’s disease [Kick et al. 1997]. At the outset of
the study no potent non-peptidic inhibitors were known. Libraries were designed
based on a known aspartyl-protease transition-state mimetic with three positions
of diversity as shown in Figure 9-10.

Monomers for each substitution position were extracted from the ACD [ACD]
and were filtered so that monomers with molecular weight greater than 275
and compounds that were incompatible with the synthesis were eliminated. This
resulted in 700 amines and approximately 1,900 acylating and sulphonylating
agents (carboxylic acids, sulphonyl chlorides and isocyanates), representing a
virtual library of more than 1 billion possible compounds.
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Two different library design strategies were compared: targeted library design
where a library was designed within the context of the active site; and diverse
library design where a second library was designed based on diversity alone.

In the targeted library, the scaffold was modelled within the active site, based
on the x-ray structure of enzyme–pepstatin complex. Four different scaffold
conformations were found to be plausible. Each monomer was then positioned
onto each scaffold conformation using CombiBuild, a variant of the DOCK
program [Kuntz et al. 1982]. The process included a full conformational search
of each monomer. Each conformation was scored using the AMBER force field
and the 50 best-scoring monomers were kept for each substitution position. High
cost monomers were subsequently removed leaving 34, 35 and 41 monomers
for R1, R2 and R3, respectively. Next, each monomer pool was clustered using
Daylight fingerprints as descriptors and an hierarchical clustering method. Ten
monomers were selected for each monomer pool from the resulting clusters. The
resulting 10×10×10 library was then synthesised and screened for activity against
Cathepsin D.

The diverse library was designed without using any information about the
target enzyme. The initial monomer pools were the same as for the targeted
library (i.e. the 700 amines and 1,900 acylating agents extracted from ACD). This
time, each entire pool of monomers was clustered using Daylight fingerprints as
descriptors and Jarvis–Patrick clustering. Ten monomers were selected from each
pool to maximise diversity; each monomer was taken from a unique cluster with
additional factors such as size and synthetic accessibility also being taken into
account. The diverse 10×10×10 library was synthesized and screened for activity
against Cathepsin D.

The targeted library resulted in 67 compounds at 1 µM activity, 23 compounds
at 333 nM and 7 compounds at 100 nM activity. The diverse library, which
contained a greater range of functionality, gave 26 compounds at 1 µM, 3
compounds at 333 nM and 1 compound at 100 nM activity. Thus, the targeted
library proved to be much more effective at identifying active compounds than
the diverse library. This study clearly demonstrates the power of integrating
combinatorial chemistry methods with structure-based design techniques, an area
of significant current interest [Kubinyi 1998b; Stahl 2000; Böhm and Stahl 2000].

7.2 Library Design in Lead Optimisation

Our second example concerns the use of solid-phase synthesis to identify
potent and orally bioavailable P38 MAP kinase inhibitors [McKenna et al.
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Figure 9-11. Structure of trans and cis isomers of the pyrimidinoimidazole-based library with
two points of diversity.

2002]. Previous work had identified a series of imidazolyl-based cyclic acetals
as inhibitors of this enzyme [McLay et al. 2001]; the new goal was the synthesis
of a library with two points of diversity that would lead to potent inhibitors with
greater bioavailability.

The generic structure of the library is shown in Figure 9-11; the points of
variation arise from the use of two sets of amines, R1R2NH and R3R4NH, the
latter forming an amide linkage to the 1,3-dioxane ring and the former undergoing
nucleophilic attack at the 2-position of the pyrimidine ring. These compounds exist
as cis or trans isomers according to the relative stereochemistry about the dioxane
ring. Both isomers were synthesised as separate libraries, with the same set of
monomers being used for each.

The library design was performed using a Monte Carlo selection algorithm
[Pickett et al. 2000]. The initial virtual library contained 1,485 product structures
(45 R1R2NH and 33 R3R4NH). This enumerated library was filtered to eliminate
compounds predicted to have poor bioavailability properties using two virtual
screens. The first filter required the polar surface area to be less than 140 Å2.
The second filter was a modified “rule of five” (ClogP < 6.2, molecular weight
< 550, number of H-bond donors < 5, number of H-bond acceptors < 12).
These modifications were derived from previous experience with this series of
compounds. These two filters reduced the initial library of 1,485 compounds to
770 acceptable structures.
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Figure 9-12. A comparison of the bioavailability data for an earlier library (LIB1) and that
discussed in the text (LIB2) showing the much higher proportion of compounds having high
bioavailability in the latter.

The desire was to construct a 20 × 20 combinatorial array. However, no such
subset existed within the 770 compounds such that all 400 compounds would
pass the filters. Due to the particular solid-phase synthetic route chosen, it was
considered important to select as close to 20 R1R2NH as possible and that the
number of R3R4NH should be equal to or greater than 20. The final library would
therefore contain at least 400 compounds for each of the two isomers and be as
close as possible to a combinatorial solution. It was also desired to include some of
the known active monomers. These requirements were combined with appropriate
weighting factors into a fitness function used by the library design algorithm
which suggested 21 R1R2NH and 24 R3R4NH. Of the 504 possible compounds
449 (i.e. 89%) satisfied the two bioavailability filters. A particular aspect of the
design algorithm was its ability to suggest near-combinatorial solutions such that
not every combination of R1R2NH and R3R4NH was actually synthesised.

Many active compounds were identified from this library including one that
was 300 times more potent in the enzyme assay than the original candidate
structure. Perhaps more striking were the bioavailability results. This can be
seen in Figure 9-12 which compares the bioavailability data (measured as Caco-2
permeability) for this library and one designed previously. The monomers for
the earlier library had been chosen by a manual procedure with only a simple
constraint on the molecular weight (MW < 550). The superior performance of the
second library, designed specifically to contain molecules with improved ADME
properties, is clear.
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8. SUMMARY

The rapid pace at which new experimental technologies for automated
chemical synthesis have been introduced has been matched by developments in
computational methods for library design. Indeed, consideration of design factors
is central to the successful application of the technology. An example of the
influence of such factors is the trend from large “diverse” libraries towards smaller,
more focussed designs.

Many of the techniques that have been described in this book are important in
library design. Thus, substructure searching of 2D databases can identify potential
reagents, and reaction databases are a source of potential synthetic routes. An ever-
increasing range of virtual screening approaches is used for the evaluation of
virtual libraries, ranging from substructure-based filters and methods based on
2D similarity through 3D-pharmacophore approaches to high-throughput protein–
ligand docking. It is increasingly desired to take ADMET properties into account.
Finally, it is often necessary to achieve an appropriate balance between many
different factors when making the selection of reagents for the actual synthesis,
not least that between the degrees of “diversity” and “focus”.

Library design has also posed new challenges. Some of these arise
because the number of novel chemical structures that could be made is so
enormous, leading for example to the development of new methods for library
enumeration and virtual screening. The desire to take into account many
different factors when designing a library has resulted in new approaches to
multiobjective design problems. The development of combinatorial chemistry
is one of the main reasons for the introduction of chemoinformatics as a
distinct discipline; just as combinatorial and other automated chemistry techniques
are now widely employed so we hope that this book will help to widen
the knowledge, understanding and appreciation of chemoinformatics within the
scientific community.





APPENDIX 1. MATRICES, EIGENVECTORS
AND EIGENVALUES

Matrices are widely used in many areas of science and computation. Here
we provide a brief summary of some of the key features relevant to the methods
described in this book.

An m × n matrix is a rectangular array of quantities with m rows and n
columns. Matrices can be added and subtracted if they have the same dimensions.
For example:

(
1 −2
3 0

)
+
(

4 1
2 −3

)
=
(

5 −1
5 −3

)
(A1.1)

(
1 2 3
4 0 1

)
−
(

1 4 0
2 −3 2

)
=
(

0 −2 3
2 3 −1

)
(A1.2)

To multiply two matrices (AB) the number of columns in A must be equal
to the number of rows in B. If A is an m × n matrix and B is an n × o matrix
the product AB is an m × o matrix. Each element (i, j) in the product matrix is
obtained by multiplying each of the n values in the i th row of A by each of the n
values in the j th column of B. For example:

(
1 −2
3 0

)(
4 1
2 −3

)
=
(

(1 × 4) + (−2 × 2) (1 × 1) + (−2 × −3)

(3 × 4) + (0 × 2) (3 × 1) + (0 × −3)

)
(A1.3)

=
(

0 7
12 3

)
(A1.4)

A square matrix has the same number of rows and columns. A diagonal matrix
is a special type of square matrix in which every element is zero except for those on
the diagonal. The unit or identity matrix I is a diagonal matrix in which all of the
diagonal elements are equal to one. If the elements of a square matrix are mirror
images above and below the diagonal then the matrix is described as symmetric.
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The transpose of a matrix, AT, is the matrix obtained by exchanging its rows and
columns. Thus the transpose of an m × n matrix is an n × m matrix:

(
1 2 3
4 0 1

)T

=
⎛

⎝
1 4
2 0
3 1

⎞

⎠ (A1.5)

The determinants of 2 × 2 and 3 × 3 matrices are calculated as follows:
∣∣∣∣
a b
c d

∣∣∣∣ = (a × d) − (b × c) (A1.6)
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= a (ei − h f ) − b (di − f g) + c (dh − eg)

For example:

∣∣∣∣
1 −2
3 0

∣∣∣∣ = 6;
∣∣∣∣∣∣

4 2 −2
2 5 0

−2 0 3

∣∣∣∣∣∣
= 28 (A1.8)

The 3 × 3 determinant is thus formulated as a combination of determinants
of a series of three 2 × 2 matrices, obtained by deleting the relevant row (i) and
column ( j). The determinant of each of these 2 × 2 matrices is then multiplied
by (−1)i+ j . The determinants of higher-order matrices (4 × 4, 5 × 5, etc.) are
obtained by extensions of this scheme; thus the determinant of a 4 × 4 matrix is
initially written in terms of a series of 3×3 matrices which in turn are decomposed
to a set of 2 × 2 matrices.

The eigenvalues and eigenvectors of a matrix are frequently required; an
eigenvector is one-column matrix x such that:

Ax = λx (A1.9)

where λ is the associated eigenvalue. This equation can be reformulated as follows:

Ax = λx ⇒ Ax = λxI ⇒ (A − λI) x = 0 (A1.10)
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For there to be a non-trivial solution (i.e. x 
= 0) the determinant |A–λI|
needs to equal zero. For small matrices the determinant can be expanded to give
a polynomial equation in λ which can then be solved. For example, to find the
eigenvalues and eigenvectors of the 3 × 3 matrix above:

∣∣∣∣∣∣

4 − λ 2 −2
2 5 − λ 0

−2 0 3 − λ

∣∣∣∣∣∣
= 0 ⇒ −λ3 + 12λ2 − 39λ + 28 = 0 (A1.11)

This equation has solutions λ = 1, λ = 4 and λ = 7 with the corresponding
eigenvectors being:

λ = 1 : x =
⎛

⎝
2/3

−1/3
2/3

⎞

⎠ ; λ = 4 : x =
⎛

⎝
−1/3
2/3
2/3

⎞

⎠ ; λ = 4 : x =
⎛

⎝
2/3
2/3

−1/3

⎞

⎠(A1.12)

Here we have written the eigenvectors as vectors of unit length although any
multiple of these would also be a solution.

For the larger matrices more typically encountered in “real” problems more
efficient computational methods are used to solve the eigenvalue problem [Press
et al. 1993].





APPENDIX 2. CONFORMATION, ENERGY
CALCULATIONS AND ENERGY SURFACES

The conformations of a molecule are the 3D structures that it can adopt.
Conformational analysis is the study of the conformations of a molecule and
their influence on its properties. Different conformations of a molecule arise from
changes in bond lengths, bond angles and torsion angles (defined in Figure A2-1).
Rotations about single bonds usually give rise to the most significant changes in
conformation and also require the least energy. For this reason it is common when
performing a conformational analysis to keep the bond lengths and angles fixed
and to vary just the rotatable bonds.

Different conformations have different energies. Such energies can be
calculated using a variety of computational chemistry techniques, of which the
two most common methods are quantum mechanics and molecular mechanics.
In quantum mechanics the Schrödinger equation (or an approximation to it) is
solved. The calculation involves both the nuclei and the electrons in the molecule.
Quantum mechanics calculations can provide a wealth of information about the
properties of the molecule but can be rather time-consuming. Molecular mechanics
uses a simpler representation of the molecule. In contrast to quantum mechanics,
the energy is dependent solely upon the positions of the nuclei; the electrons
are not explicitly represented. In molecular mechanics the energy of a given
conformation is calculated using a force field. A typical force field will have
contributions from the stretching of bonds, from the bending of angles, from
torsional rotations and from electrostatic and van der Waals interactions between
atoms, as in the following equation [Leach 2001]:
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(
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Figure A2-1. The torsion angle A–B–C–D (τ ) is defined as the angle between the two planes
ABC and BCD. A torsion angle can vary between 0◦ and 360◦, although it is more common to
use the range −180◦ to +180◦. If one looks along the bond B–C then the torsion angle is the
angle through which it is necessary to rotate the bond A–B in a clockwise direction in order to
superimpose the two planes.

The various constants in Equation A2.1 (e.g. ki , li,0, Vn, σi j ) are parameters
that must be determined, usually from experimental measurements or from high-
level quantum mechanics calculations on small representative systems. The first
two terms in the equation provide the energy due to the stretching and bending
of bonds and variations in bond angles, respectively. These are modelled in
Equation A2.1 by a Hooke’s law formulation, in which the energy is proportional
to the square of the deviation from the relevant reference value (i.e. li,0 or θi,0).
The third term corresponds to changes in torsion angles. An appropriate choice
of the parameters Vn , n and γ enables the energy variation due to bond rotations
to be reproduced. Perhaps the simplest example is ethane, which shows threefold
symmetry with energy minima at ±60◦ and ±180◦ (Figure A2-2).

The fourth and fifth terms in Equation A2.1 provide the non-bonded
interactions involving summations over all pairs of atoms (other than those
that are bonded to each other or to a common third atom). The fourth term
gives the contribution due to electrostatic interactions that arise from the uneven
distribution of charge in the molecule. Electrostatic interactions are often modelled
using a Coulombic expression that varies as the inverse of the interatomic
separation (Figure A2-3). The variables qi and q j in the expression are partial
atomic charges; these are non-integral charge values assigned to each atom in
order to reproduce the electrostatic properties of the molecule. The fifth term
in Equation A2.1 is that due to van der Waals forces, modelled here using the
Lennard–Jones potential. There are two components to these forces. First, there are
attractive interactions between the instantaneous dipoles that arise from electronic
fluctuations. This is modelled using the 1/r6 term. At shorter separations there is
a repulsive interaction, quantum mechanical in origin, and modelled using a 1/r12

term. The combination of these two terms gives rise to the potential curve shown
in Figure A2-3.

The variations in energy due to changes in conformation define the molecule’s
energy surface (or hypersursface). An energy surface will usually have positions
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Figure A2-2. The variation in energy with rotation about the carbon–carbon single bond in
ethane shows threefold symmetry, with minima at ±60◦ and ±180◦ and a barrier height of
approximately 2.9 kcal/mol.

Lennard-Jones

Coulomb

r

V

Figure A2-3. Schematic illustration of the van der Waals and electrostatic interactions, modelled
using the Lennard–Jones and Coulombic potentials, respectively.

where the energy passes through a minimum; at such a point any change in the
conformation will cause the energy to increase. The objective of a conformational
search is usually to identify the minimum-energy conformations of a molecule.
The minimum with the lowest energy is called the global minimum-energy
conformation. An example of an energy surface for a simple molecule (n-pentane)
is shown in Figure A2-4.

A minimisation algorithm is a computational procedure that takes as input
an initial conformation and changes it to locate the associated minimum point
on the energy surface. Most minimisation methods are only able to move
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Figure A2-4. Variation in the energy of n-pentane with the two torsion angles τ1 and τ2,
represented as an isometric plot (left) and a contour diagram (right). Only the lowest energy
regions are shown; as can be seen, these include a number of energy minima. The global energy
minimum corresponds to the fully extended conformation in which each torsion angle has the
value 180◦. (Adapted from Leach 2001.)

“downhill” on the energy surface towards the nearest minimum. This is why it
is necessary to use a second, conformational search, algorithm when exploring the
conformational space. The conformational search algorithm is used to generate the
initial structures for subsequent energy minimisation, as described in Chapter 2.

Many procedures rely on molecular fitting that enable one to calculate whether
two conformations are the same. Such algorithms use a function that quantifies
the “difference” between two structures; the objective then is to find the relative
orientations of the two conformations in which this function is minimised. The
most commonly used function is the root mean square distance (RMSD) between
pairs of atoms:

RMSD =

√√√√√
Natoms∑
i=1

d2
i

Natoms
(A2.2)

where Natoms is the number of atoms over which the RMSD is measured and
di is the distance between atom i in the two structures, when they are overlaid.
Some molecular fitting algorithms use an iterative approach, moving one molecule
relative to the other in order to reduce the RMSD. Other algorithms locate the
optimal position directly.
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Böhm H-J and G Schneider (Editors) (2000). Virtual Screening for Bioactive Molecules.
Weinheim, Wiley-VCH.

Klebe G (Editor) (2000). Virtual Screening: An Alternative or Complement to High Throughput
Screening? Perspectives in Drug Discovery and Design, Volume 20. Dordrecht, Kluwer.

Muegge I and M Rarey (2001). Small Molecule Docking and Scoring. In Lipkowitz K B and
D B Boyd (Editors), Reviews in Computational Chemistry, Volume 17. New York, VCH, pp
1–60.



Further Reading 215

Stouten P F W (2006). Docking and Scoring. In Triggle D J and J B Taylor (Editors),
Comprehensive Medicinal Chemistry II, Volume 4. Oxford: Elsevier, pp 255–282.

van de Waterbeemd H, D A Smith, K Beaumont and D K Walker (2001). Property-Based
Design: Optimisation of Drug Absorption and Pharmacokinetics. Journal of Medicinal
Chemistry 44:1313–1333.

van de Waterbeemd H and E Gifford (2003). ADMET in Silico Modelling: Towards Prediction
Paradise? Nature Reviews Drug Discovery 2:192–204.

Walters W P, M T Stahl and M A Murcko (1998). Virtual Screening – An Overview. Drug
Discovery Today 3:160–178.

Chapter 9

Agrafiotis D K, J C Myslik and F R Salemme (1999). Advances in Diversity Profiling and
Combinatorial Series Design. Molecular Diversity 4:1–22.

Drewry D H and S S Young (1999). Approaches to the Design of Combinatorial Libraries.
Chemometrics in Intelligent Laboratory Systems 48:1–20.

Ghose A K and V N Viswanadhan (Editors) (2001) Combinatorial Library Design and
Evaluation. Principles, Software Tools and Applications in Drug Discovery. New York,
Marcel Dekker.

Lewis R A, S D Pickett and D E Clark (2000). Computer-Aided Molecular Diversity Analysis
and Combinatorial Library Design. In Lipkowitz K B and D B Boyd (Editors), Reviews in
Computational Chemistry, Volume 16. New York, VCH, pp 1–51.

Martin E J, D C Spellmeyer, R E Critchlow Jr and J M Blaney (1997). Does Combinatorial
Chemistry Obviate Computer-Aided Drug Design? In Lipkowitz K B and D B Boyd (Editors),
Reviews in Computational Chemistry, Volume 10. New York, VCH, pp 75–100.

Mason J S and S D Pickett (2003). Combinatorial Library Design, Molecular Similarity and
Diversity Applications. In Abraham D A (Editor), Burger’s Medicinal Chemistry, Sixth
Edition. Chichester, Wiley.

Pickett S D (2006). Library Design: Reactant and Product-Based Approaches. In Triggle D J and
J B Taylor (Editors), Comprehensive Medicinal Chemistry II, Volume 4. Oxford: Elsevier, pp
337–378.

Schnur D M, A J Tebben and C L Cavallaro (2006). Library Design: Ligand and Structure-Based
Principles for Parallel and Combinatorial Libraries. In Triggle D J and J B Taylor (Editors),
Comprehensive Medicinal Chemistry II, Volume 4. Oxford: Elsevier, pp 307–336.

Spellmeyer D C and P D J Grootenhuis (1999). Recent Developments in Molecular Diversity:
Computational Approaches to Combinatorial Chemistry. Annual Reports in Medicinal
Chemistry 34:287–296.





REFERENCES

Abagyan R and M Totrov (2001). High-Throughput Docking for Lead Generation. Current
Opinion in Chemical Biology 5:375–382.

Abraham M H (1993). Scales of Solute Hydrogen-Bonding: Their Construction and Application
to Physicochemical and Biochemical Processes. Chemical Society Reviews 22:73–83.

Abraham M H and J A Platts (2001). Hydrogen Bond Structural Group Constants. Journal of
Organic Chemistry 66:3484–3491.

Abraham M H, A Ibrahim, A M Zissmos, Y H Zhao, J Comer and D P Reynolds (2002).
Applications of Hydrogen Bonding Calculations in Property Based Drug Design. Drug
Discovery Today 7:1056–1063.

ACD. Available Chemicals Directory, MDL Information Systems, Inc. 14600 Catalina Street,
San Leandro, CA 94577. Also at http://www.mdli.com.

Adamson G W, J Cowell, M F Lynch, A H W McLure, W G Town and A M Yapp (1973).
Strategic Considerations in the Design of a Screening System for Substructure Searches of
Chemical Structure Files. Journal of Chemical Documentation 13:153–157.

Agrafiotis D K (1997). Stochastic Algorithms for Maximising Molecular Diversity. Journal of
Chemical Information and Computer Sciences 37:841–851.

Agrafiotis D K (2002). Multiobjective Optimisation of Combinatorial Libraries. Journal of
Computer-Aided Molecular Design 5/6:335–356.

Agrafiotis D K and V S Lobanov (1999). An Efficient Implementation of Distance-Based
Diversity Measures Based on k–d Trees. Journal of Chemical Information and Computer
Sciences 39:51–58.

Agrafiotis D K and V S Lobanov (2000). Nonlinear Mapping Networks. Journal of Chemical
Information and Computer Sciences 40:1356–1362.

Ahlberg C (1999). Visual Exploration of HTS Databases: Bridging the Gap Between Chemistry
and Biology. Drug Discovery Today 4:370–376.

Ajay A, W P Walters and M A Murcko (1998). Can We Learn to Distinguish Between “Drug-
like” and “Nondrug-like” Molecules? Journal of Medicinal Chemistry 41:3314–3324.

Ajay A and M A Murcko (1995). Computational Methods to Predict Binding Free Energy in
Ligand–Receptor Complexes. Journal of Medicinal Chemistry 38:4951–4967.

Aldenderfer M S and R K Blashfield (1984).Cluster Analysis. Beverly Hills CA, Sage University
Press.

Allen F H (2002). The Cambridge Structural Database: A Quarter of a Million Crystal Structures
and Rising. Acta Crystallographica B58:380–388. Also at http://www.ccdc.cam.ac.uk.

Allen F H, O Kennard, D G Watson, L Brammer, A G Orpen and R Taylor (1987). Tables of
Bond Lengths Determined by X-Ray and Neutron Diffraction. 1. Bond Lengths in Organic
Compounds. Journal of the Chemical Society Perkin Transactions II:S1–S19.

Allen F H, S A Bellard, M D Brice, B A Cartwright, A Doubleday, H Higgs, T Hummelink,
B G Hummelink-Peters, O Kennard, W D S Motherwell, J R Rodgers and D G Watson
(1979). The Cambridge Crystallographic Data Centre: Computer-Based Search, Retrieval,
Analysis and Display of Information. Acta Crystallographica B35:2331–2339.

217



218 An Introduction to Chemoinformatics

Andrea T A and H Kalayeh (1991). Applications of Neural Networks in Quantitative Structure–
Activity Relationships of Dihydrofolate-Reductase Inhibitors. Journal of Medicinal
Chemistry 34:2824–2836.

A-Razzak M and R C Glen (1992). Applications of Rule-Induction in the Derivation of
Quantitative Structure–Activity Relationships. Journal of Computer-Aided Molecular Design
6:349–383.

Attias R (1983). DARC Substructure Search System – a New Approach to Chemical
Information. Journal of Chemical Information and Computer Sciences 23:102–108.

Bacha P A, H S Gruver, B K Den Hartog, S Y Tamura and R F Nutt (2002). Rule Extraction
from a Mutagenicity Data Set Using Adaptively Grown Phylogenetic-like Trees. Journal of
Chemical Information and Computer Sciences 42:1104–1111.

Bajorath J (2002). Integration of Virtual and High-Throughput Screening. Nature Reviews. Drug
Discovery 1:882–894.

Bajorath J (2004). Chemoinformatics: Concepts, Methods, and Tools for Drug Discovery.
Totowa, NJ, Humana Press,

Baldwin J J (1996). Conference on Libraries and Drug Discovery. Coronado, CA, January
29–31.

Barker E J, D A Cosgrove, E J Gardiner, V J Gillet, P Kitts and P Willett (2006).
Scaffold-Hopping Using Clique Detection Applied to Reduced Graphs. Journal of Chemical
Information and Modeling 46:503–511.

Barnard J M (1988). Problems of Substructure Search and Their Solution. In Warr W A
(Editor), Chemical Structures. The International Language of Chemistry. Berlin, Springer,
pp 113–126.

Barnard J M (1993). Substructure Searching Methods: Old and New. Journal of Chemical
Information and Computer Sciences 33:532–538.

Barnard J M, G M Downs, A von Scholley-Pfab and R D Brown (2000). Use of
Markush Structure Analysis Techniques for Descriptor Generation and Clustering of Large
Combinatorial Libraries. Journal of Molecular Graphics and Modelling 18:452–463.

Barnum D, J Greene, A Smellie and P Sprague (1996). Identification of Common Functional
Configurations Among Molecules. Journal of Chemical Information and Computer Sciences
36:563–571.

Baroni M, G Costantino, G Cruciani, D Riganelli, R Valigi and S Clementi (1993). Generating
Optimal Linear PLS Estimations (GOLPE): An Advanced Chemometric Tool for Handling
3D-QSAR Problems. Quantitative Structure–Activity Relationships 12:9–20.

Basak S C, V R Magnuson, G J Niemi and R R Regal (1988). Determining Structural Similarity
of Chemicals Using Graph-Theoretic Indices. Discrete Applied Mathematics 19:17–44.

Bass M B, D F Hopkins, W A N Jaquysh and R L Ornstein (1992). A Method for Determining
the Positions of Polar Hydrogens Added to a Protein Structure that Maximizes Protein
Hydrogen Bonding. Proteins: Structure, Function, and Genetics 12:266–277.

Baxter C A, C W Murray, D E Clark, D R Westhead and M D Eldridge (1998). Flexible Docking
Using Tabu Search and an Empirical Estimate of Binding Affinity. Proteins: Structure,
Function and Genetics 33:367–382.

Bayada D M, H Hamersma and V J van Geerestein (1999). Molecular Diversity and
Representativity in Chemical Databases. Journal of Chemical Information and Computer
Sciences 39:1–10.

Bayley M J and Willett P (1999). Binning Schemes for Partition-Based Compound Selection.
Journal of Molecular Graphics and Modelling 17:10–18.

BCI. Barnard Chemical Information Ltd., 46 Uppergate Road, Stannington, Sheffield S6 6BX,
UK. Also at http://www.bci.gb.com.



References 219

Begg T and C Connely (1998). Database Systems: An Introduction, Second Edition. London,
Addison-Wesley.

Bemis G W and I D Kuntz (1992). A Fast and Efficient Method for 2D and 3D Molecular Shape
Descriptors. Journal of Computer-Aided Molecular Design 6:607–628.

Bender A, H Y Mussa, R C Glen and S Reiling (2004). Molecular Similarity Searching Using
Atom Environments: Information-Based Feature Selection and a Naive Bayesian Classifier.
Journal of Chemical Information and Computer Sciences 44:170–178.

Benichou P, C Klimczak and P Borne (1997). Handling Genericity in Chemical Structures Using
the Markush DARC Software. Journal of Chemical Information and Computer Sciences
37:43–53.

Bennett K P and C Campbell (2000). Support Vector Machines: Hype or Hallelujah? SIGKDD
Explorations 2:1–13.

Beresford A P, H E Selick and M H Tarbit (2002). The Emerging Importance of Predictive
ADME Simulation in Drug Discovery. Drug Discovery Today 7:109–116.

Berman H M, J Westbrook, Z Feng, G Gilliland, T N Bhat, H Weissig, I N Shindyalov and
P E Bourne (2000). The Protein Data Bank. Nucleic Acids Research 28:235–242.

Bernstein F C, T F Koetzle, G J B Williams, E Meyer, M D Bryce, J R Rogers, O Kennard,
T Shikanouchi and M Tasumi (1977). The Protein Data Bank: A Computer-Based Archival
File for Macromolecular Structures. Journal of Molecular Biology 112:535–542. Also at
http://www.rcsb.org.

Beroza P, E K Bradley, J E Eksterowicz, R Feinstein, J Greene, P D J Grootenhuis, R M Henne,
J Mount, W A Shirley, A Smellie, R V Stanton and D C Spellmeyer (2000). Applications of
Random Sampling to Virtual Screening of Combinatorial Libraries. Journal of Molecular
Graphics and Modelling 18:335–342.

Bissantz C, G Folkers and D Rognan (2000). Protein-Based Virtual Screening of Chemical
Databases. 1. Evaluations of Different Docking/Scoring Combinations. Journal of Medicinal
Chemistry 43:4759–4767.

Blake J E and R C Dana (1990). CASREACT – More than a Million Reactions. Journal of
Chemical Information and Computer Sciences 30:394–399.

Blaney F E, C Edge and R W Phippen (1995). Molecular Surface Comparison: 2. Similarity of
Electrostatic Surface Vectors in Drug Design. Journal of Molecular Graphics 13:165–174.

Blaney F E, P Finn, R W Phippen and M Wyatt (1993). Molecular Surface Comparison:
Application to Molecular Design. Journal of Molecular Graphics 11:98–105.

Blaney J M and J S Dixon (1993). A Good Ligand is Hard to Find: Automated Docking Methods.
Perspectives in Drug Discovery and Design 1:301–319.

Blaney J M and J S Dixon (1994). Distance Geometry in Molecular Modeling. In Lipkowitz K B
and D B Boyd (Editors), Reviews in Computational Chemistry, Volume 5. New York, VCH,
pp 299–335.
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Böhm H-J (1998). Prediction of Binding Constants of Protein Ligands: A Fast Method for
the Prioritisation of Hits Obtained from De Novo Design or 3D Database Search Programs.
Journal of Computer-Aided Molecular Design 12:309–323.
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P Gillespie, R Goodnow, W Harris, P Jones, M Taniguchi, S Tsujii, W von der Saal, G
Zimmermann and G Schneider (2002). Development of a Virtual Screening Method for
Identification of “Frequent Hitters” in Compound Libraries. Journal of Medicinal Chemistry
45:137–142.

Rogers D, R D Brown and M Hahn (2005). Using Extended-Connectivity Fingerprints with
Laplacian-Modified Bayesian Analysis in High-Throughput Screening Follow-Up. Journal
of Biomolecular Screening 10:682–686.



238 An Introduction to Chemoinformatics

Rogers D and A J Hopfinger (1994). Application of Genetic Function Approximation
to Quantitative Structure–Activity Relationships and Quantitative Structure–Property
Relationships. Journal of Chemical Information and Computer Sciences 34:854–866.

Rosenkranz H S, A R Cunningham, Y P Zhang, H G Claycamp, O T Macina, N B Sussman,
S G Grant and G Klopman (1999). Development, Characterization and Application of
Predictive-Toxicology Models. SAR and QSAR 10:277–298.

Rubin V and P Willett (1983). A Comparison of Some Hierarchical Monothetic Divisive
Clustering Algorithms for Structure–Property Correlation. Analytica Chemica Acta 151:161–
166.

Rummelhart D E, G W Hinton and R J Williams (1986). Learning Representations by Back-
Propagating Errors. Nature 323:533–536.

Rush T S, J A Grant, L Mosyak and A Nicholls (2005). A Shape-Based 3-D Scaffold Hopping
Method and Its Application to a Bacterial Protein–Protein Interaction. Journal of Medicinal
Chemistry 48:1489–1495.

Rusinko A III, J M Skell, R Balducci, C M McGarity and R S Pearlman (1988). CONCORD:
A Program for the Rapid Generation of High Quality 3D Molecular Structures. St Louis,
MO, The University of Texas at Austin and Tripos Associates.

Rusinko A III, M W Farmen, C G Lambert, P L Brown and S S Young (1999). Analysis
of a Large Structure/Biological Activity Data Set Using Recursive Partitioning. Journal of
Chemical Information and Computer Sciences 39:1017–1026.

Russo E (2002). Chemistry Plans a Structural Overhaul. Nature 419 (12 September2002)
Naturejobs:4–7.

Sadowski J and H Kubinyi (1998). A Scoring Scheme for Discriminating Between Drugs and
Nondrugs. Journal of Medicinal Chemistry 41:3325–3329.

Saeh J C, P D Lyne, B K Takasaki and D A Cosgrove (2005). Lead Hopping Using SVM and 3d
Pharmacophore Fingerprints. Journal of Chemical Information and Modeling 45:1122–1133.

Sammon J W Jr (1969). A Nonlinear Mapping for Data Structure Analysis. IEEE Transactions
on Computers 18:401–409.

Sanderson D M and C G Earnshaw (1991). Computer Prediction of Possible Toxic Action form
Chemical Structure; The DEREK System. Human and Experimental Toxicology 10:261–273.

Sanz F, F Manaut, J Rodriguez, E Loyoza and E Ploez-de-Brinao (1993). MEPSIM: A
Computational Package for Analysis and Comparison of Molecular Electrostatic Potentials.
Journal of Computer-Aided Molecular Design 7:337–347.

Saunders M (1987). Stochastic Exploration of Molecular Mechanics Energy Surface: Hunting
for the Global Minimum. The Journal of the American Chemical Society 109:3150–3152.

Saunders M, K N Houk, Y-D Wu, W C Still, M Lipton, G Chang and W C Guida
(1990). Conformations of Cycloheptadecane. A Comparison of Methods for Conformational
Searching. The Journal of the American Chemical Society 112:1419–1427.

Scheraga H A (1993). Searching Conformational Space. In van Gunsteren W F, P K Weiner and
A J Wilkinson (Editors), Computer Simulation of Biomolecular Systems, Volume 2. Leiden,
ESCOM Science.

Schneider G (2000). Neural Networks are Useful Tools for Drug Design. Neural Networks
13:15–16.

Schneider G and P Wrede (1998). Artificial Neural Networks for Computer-Based Molecular
Design. Progress in Biophysics and Molecular Biology 70:175–222.

Schneider G, W Neidhart, T Giller and G Schmid (1999). “Scaffold-Hopping” by
Topological Pharmacophore Search: A Contribution to Virtual Screening. Angewandte
Chemie (International ed. in English) 38:2894–2896.



References 239

Schofield H, G Wiggins and P Willett (2001). Recent Developments in Chemoinformatics
Education. Drug Discovery Today 6:931–934.

Schuffenhauer A, V J Gillet and P Willett (2000). Similarity Searching in Files of Three-
Dimensional Chemical Structures: Analysis of the BIOSTER Database Using Two-
Dimensional Fingerprints and Molecular Field Descriptors. Journal of Chemical Information
and Computer Sciences 40:295–307.

Schuffenhauer A, P Floersheim, P Acklin and E Jacoby (2003). Similarity Metrics for Ligands
Reflecting the Similarity of the Target Proteins. Journal of Chemical Information and
Computer Sciences 43:391–405.

SciTegic, 9665 Chesapeake Drive, Suite 401, San Diego, CA 92123-1365. Also at
http://www.scitegic.com.

Shemetulskis N, D Weininger, C J Blankley, J J Yang and C Humblet (1996). Stigmata: An
Algorithm to Determine Structural Commonalities in Diverse Datasets. Journal of Chemical
Information and Computer Sciences 36:862–871.

Shenkin P S, D L Yarmusch, R M Fine, H Wang and C Levinthal (1987). Predicting Antibody
Hypervariable Loop Conformation. I. Ensembles of Random Conformations for Ringlink
Structures. Biopolymers 26:2053–2085.

Sheridan R P and S K Kearsley (1995). Using a Genetic Algorithm to Suggest Combinatorial
Libraries. Journal of Chemical Information and Computer Sciences 35:310–320.

Sheridan R P and S K Kearsley (2002). Why Do We Need So Many Chemical Similarity Search
Methods? Drug Discovery Today 7:903–911.

Sheridan R P, B P Feuston, V N Maiorov and S K Kearsley (2004). Similarity to Molecules
in the Training Set is a Good Discriminator for Prediction Accuracy in QSAR. Journal of
Chemical Information and Computer Sciences 44:1912–1928.

Sheridan R P, M D Miller, D J Underwood and S K Kearsley (1996). Chemical Similarity Using
Geometric Atom Pair Descriptors. Journal of Chemical Information and Computer Sciences
36:128–136.

Sheridan R P, S G SanFeliciano and S K Kearsley (2000). Designing Targeted Libraries with
Genetic Algorithms. Journal of Molecular Graphics and Modelling 18:320–334.

Shi L M, Y Fan, J K Lee, M Waltham, D T Andrews, U Scherf, K D Paull and J N Weinstein
(2000). Mining and Visualizing Large Anticancer Drug Discovery Databases. Journal of
Chemical Information and Computer Sciences 40:367–379.

Shoichet B K, S L McGovern, B Wei and J J Irwin (2002). Lead Discovery Using Molecular
Docking. Current Opinion in Chemical Biology 6:439–446.

Silipo C and Vittoria A (1990). Three-Dimensional Structure of Drugs. In Ramsden C A
(Editor), Comprehensive Medicinal Chemistry, Volume 4. New York, Pergamon Press,
pp 153–204.

Smellie A S, S D Kahn and S L Teig (1995a). Analysis of Conformational Coverage. 1.
Validation and Estimation of Coverage. Journal of Chemical Information and Computer
Sciences 35:285–294.

Smellie A S, S L Teig and P Towbin (1995b). Poling: Promoting Conformational Variation.
Journal of Computational Chemistry 16:171–187.

Snarey M, N K Terrett, P Willett and D J Wilton (1997). Comparison of Algorithms for
Dissimilarity-Based Compound Selection. Journal of Molecular Graphics and Modelling
15:372–385.

Sneath P H A and R R Sokal (1973). Numerical Taxonomy. San Francisco, CA, W H Freeman.
So S S, S P van Helden, V J van Geerstein and M Karplus (2000). Quantitative Structure–

Activity Relationship Studies of Progesterone Receptor Binding Steroids. Journal of
Chemical Information and Computer Sciences 40:762–772.



240 An Introduction to Chemoinformatics

Sotriffer C A, H Gohlke and G Klebe (2002). Docking into Knowledge-Based Potential Fields:
A Comparative Evaluation of DrugScore. Journal of Medicinal Chemistry 45:1967–1970.

Spotfire. Spotfire, 212 Elm Street, Somerville, MA 02144. Also at http://www.spotfire.com.
SPRESI. The Spresi database. Daylight Chemical Information Systems, Inc., Mission Viejo,

CA. Also at http://www.daylight.com.
Srinivasan J, A Castellino, E K Bradley, J E Eksterowicz, P D J Grootenhuis, S Putta and

R V Stanton (2002). Evaluation of a Novel Shape-Based Computational Filter for Lead
Evolution: Application to Thrombin Inhibitors. Journal of Medicinal Chemistry 45:2494–
2500.

Stahl M (2000). Structure-Based Library Design. Methods and Principles in Medicinal
Chemistry 10:229–264.
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